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Vector Spaces

For F' is a field, suppose V is an F- vector space, then

V is an abelian group under addition (+) with
1. Commutativity
2. Associativity
3. Additive Identity
4. Additive Inverse

In addition, V' has scalar multiplication:
S FxV =V

in particular, A € F, v eV — Av € V, and
1. 1-v=v
2. M+ A2) v= v+ v
3. A(v1 +v2) = Avg + Mg

Example 0.1
Let X # & be a set, let F be a field, and let V = {f : X — F'} is a vector space,
1. + on V is pointwise addition

(f+9)(@) = f(x) +g(x)

2. 0, is the function that 0,(z) =0,V z € X.

3. Ne F,f eV, then (A\f)(z) = Af(z).



Example 0.2
For n € N and F field, F* = {aj,aq9,...,a, : a1,...,a, € F} is a vector space,

1. (al,...,an)+(b1,...,bn):(a1+b1,...,an+bn).

Example 0.3

If F'is a field, FF C K where K is a field extension of F', then K is F- vector space.

Example 0.4

F field, then V' = F[z] is F- vector space.

Subspace

Definition 0.1

W is a subspace of V if W C V is a subgroup and VA € V, Vw € W we have \w € W.

More concretely, W is a subspace of V if:
1. 0ew
2. Vwy,we €W, wi +wy €W
3. VAXe FYweW, \weW
Remark: We do not need to mention the additive inverse because we can get it for free from 3.
Example 0.5
Let X =[0,1], F=R,and V = {f : X — F}, then the following two are examples of subspaces of V:
1. VOW ={f:X — F, f continuous}

2. V2OU={f:X — F, f continuously differentiable}



Linear Mapping

For F is a field, V,W are F- vector spaces, and T : V' — W, then for T to preserve the vector spaces’

structures, we want:
1. T(v1 +v2) =T (v1) + T(v2)
2. T(W)=XT(v), VAEF, veV
3. T(0y) = 0w
Remark: We can deduce 3 from 1 and 2.
Definition 0.2: Linear map
A map T with properties 1 and 2 is called a linear map.
Example: Let V be the real vector space of continuous functions from [0,1] to R. Let T': V' — R be given
by T(f(x)) = fol f(z)dx. Show that T is a linear map.
Exercise: Let K be a field of characteristic p. Notice that K has a subfield {0,1,2,...,p — 1} that we

denote by F,, and so K is an F,-vector space. Show that T': K — K given by T'(z) = z? is a linear map

when we regard K as an IF,,-vector space.
Therefore, given a linear map

T:V W  V,W are F- vector space

For the kernel of T, ker(T) = {v € V, T(v) = Ow} and the image of T, im(T) = {T'(v) : v € V}, we have

the following lemma:
Lemma 0.1

ker(T') C V is a subspace of V' and im(T") C W is a subspace of W.
Proof: Definition check lol. O

Lecture 2 - Wed - Jan 10 - 2024

Recall that from last lecture, for F'is a field, V,W are F-v.s. and T': V. — W, then T is linear (or

we call it F-linear) if

1. T(vy +v9) =T(v1)+ T forvy, vy €V
2. T (M) = AT (v) forAe FLveV

Example 0.6

Suppose V =R? and W =R? and T : R® — R?, T'(z,y,2) = (22 + vy, 32 — 2). Then T is linear.



Example 0.7

uppose V = C[z] (aka C-v.s.), and T : V — V, T(p(z)) = p'(x), then T is linear.

Example 0.8

uppose K is a field of characteristic p > 0, p prime and K D {0,1,...,p — 1} =: F,. Then K is a
Fp-v.s. Let F': K — K, then F' = 2P is F)-linear.

Proposition 0.1
The following holds:
1. HT:V W and S: W — U are linear, then SoT : V — U.
2. If T: V — W is linear and bijective then T~ : W — V is linear.

3. I:V — V (identity), I(v) = v is linear.

Proof:

1. Notice

SoT(vy+wv2) =85 (T(v1)+T(vs2))
=5 (T(v1)
=So0T(n

SoT(\) =S (T(\))
=S (\T(v))
—AS(T(v))
=ASoT(v)

2. Notice

T (T_l (w1 + w2)> = w1 + w2
T (T w1)) + T (T (ws)) = w1 + wo
= T(T7" (w1 +ws)) =T (T (w1)) + T (T " (w2))

Since T is one-to-one, T~ (wy + wa) = T~ (wy) + T~ (ws). Moreover,

(T (A\w)) = \w
TOT Y w)) = \w
= T 'Ow)= AT (w)



Example 0.9

et F'=C and V = Clz], we say that T : C[z] — C[z], T(p(z))
S(p(x)) = xp(zx) is linear. Thus

p'(z) is linear, and we can show that

Exercise:
(ToS—50T)(p(x)) = plx) = I(p(z))
Moreover
ker(T") = { constant polynomial C C[z]}
im(T) = Clz]
ker(S) = {0}
im(S) = 2Clz] = {p(z) : p(0) = 0}
Isomorphism

If there is an isomorphism from V to W, then we write V' = W and say that V is isomorphic to W or that
V and W are isomorphic.
Example:

If V,W are F-v.s. and T : V — W is linear and bijective, then T is an isomorphism from V to W.
Remark: Isomorphism is reflective, symmetric, and transitive.

Example 0.10

Let V = Flz]<, and W = F"*! = {(a4,...,ay),a; € F}. Then V= W.

Linear Independence
Set-up:
Definition 0.3: Linear combination
F field, V' is F-vector space, and S C V' is an F-linear combination of S is a sum of the form ) g A\iS
for \; e F,andVseS.
Example 0.11

Let V = F|z], what is a linear combination of S = {1,z,2?,...}

Answer:
/\0'1+)\1'$+)\2'$2+"' N EF



(note this is a polynomial).
Lecture 3 - Fri - Jan 12 - 2024

Recall the definition for linear combination. Alternatively, a linear combination of S can be obtained

by taking a finite subset {vy,...,v,} of S and scalars ¢1,...,¢, € F and form the sum:

c1v1 + -+ Ccpun

Definition 0.4: Span

We define the Span of S C V| which we denote as span(.S) to be the collection of all linear combinations

of elements of S.

Example 0.12

et V=R3 let S ={(1,0,0),(0,2,0),(1,3,0)}, so
span(S) = {(a,b,O) ta,be R}

Remark: span(S) # R2, but span(9) = R2.

Example 0.13

et V = Flz],
let S ={1,z,2% ...,2"}, so span(S) = Flz]<
let 7= {1,2% 24,25, ...}, so span(T) = F[z?] C Flx].

Proposition 0.2

Let S C V, then span(S) is a subspace of V.

Proof: To show that span(S) is a subspace of V, we must show that
1. wy,wy € span(S) = w; + ws € span(S)
2. e F, w € span(S) = Aw € span(S)
3. 0 € span(9S)

30

Definition 0.5

If span(S) = V, then we say S spans V.



Definition 0.6: Linear dependent

Stop staring at this and being confused. I really have nothing here.

Example 0.14
Which of the following subsets of R? are linear independent?
1. {(1,2,3),(1,1,1)} v

2. {(1,2,3),(-2,—-4,-6)} X

3. o v
4. R? X
5. {(0,0,0)} X

Definition 0.7: Basis

A set S CV is a basis if S spans V and S is linear independent.

Tutorial 1 - Mon - Jan 15 - 2024

Category

Definition 0.8
A category C consists of
1. A class (collection) of objects: Ob C
2. A class of morphisms for each (A, B) € Ob C x Ob C: Hom(A, B) ("maps” from A to B).

3. Composition o between compatible morphisms: f € Hom(A,B), ¢ € Hom(B,C) —
go f € Hom(A,C).

4. (hog)of=ho(gof)

5. 314 € Hom(A,A) s.t. goly=g,1la0f=f.

Remark: C is locally small if V A, B € Ob C, Hom(A, B) is a set.

Remark: In a category, objects have some structures, morphisms are often structure-preserving.

Functor



Definition 0.9: Functor

A functor between categories C' and D denoted as F' : C' +— D, consists of

1.
map FF': ObC+— Ob D
A— FA
2.
map F : Homg(A,B) — Homp (FA, FB)
= F(f)
subject to

1. F(go f) = F(g)o F(f)

2. F(14)=1pa

Subcategory

Definition 0.10: Subcategory
Subcategory of C' is a category D where
1. ObDCObC

2. ¥V A, B we have Homp(A,B) C Homc(A,B)

If V A, B we have Homp (A, B) = Homc (A, B), then we say D is a full subcategory.
Example 0.15
1. Abelian group is a subcategory of groups (FULL)
2. Fields is a subcategory of rings (FULL)

3. Rug is a subcategory of Ring (NOT FULL)

Lecture 4 - Mon - Jan 15 - 2024
Remark:
1. f SCV, S spans V and v € V\S, then S U {v} is linear dependent.

2. If T C V is linear independent and v € T, then T\ {v} does not span.



Linear Independent Spanning

Main Facts

1. Every vector space has a basis

2. If V is a vector space, either every basis for V' is infinite, or there exists n € NU{0} such that all basis

have size n.
Remark: @ is a basis for (0).
Proposition 0.3
If V is a vector space, S C T C V are subsets with S linear independent, T' spanning V, |T| < oco.

Then there exists a basis B for V with SC B C T.

Proof: Let U be the set of all linear independent subsets U with S C U C T. Notice U # @ since
S C U. Now let B be an element of U of maximal size. Claim: B is a basis for V. STP: B spans V.
SFAC span(B) # V, then 3 v € T such that v ¢ span(B). Consider B U {v}, it must be linear dependent
because of the maximality of B. From which we can conclude that v € span(B). Thus we can conclude that
span(B) =V. O

Zorn’s Lemma
We first define partially ordered set (poset)

Definition 0.11: Poset

Let P be an non-empty set with < binary relation such that the following hold
1. Va € P, a < a. (Reflective)
2. Va,byce P,a<bb<c = a<c. (Transitive)

3. Va,be P,a<bb<a = a=>. (Anti-symmetric)

Inside poset, we can have chains.
Lecture 5 - Wed - Jan 17 - 2024

Recall the definition for poset from last lecture. We provide an example of a poset:



Example 0.16

We take a look at the set {1,2,3} and all its subsets, and we define the binary operation to be
\subseteq : C. It is easy to find that this forms a poset:

{1,2,3}

|
{1,2} {1,3} {2,3}
<7 >

. \ | / )
%)
Remark: Taking the proper subsets of {1, 2,3} would also form a poset with same binary operation.

Exercise: Put a binary relation on the set X of all living things that have ever lived, by declaring that
x <y if and only if x is an ancestor of y. Is this a partial order on X7

Proof: This really depends on how you think ”I am an ancestor of myself” :3 O

Exercise: Let X = N and declare that < y if 2 | y. Is this a partial order? Does X have a least element?
Does it have a greatest element.
Proof:

1. Tt is reflective, since we know z | x
2. Tt is transitive, since z | y and y | z implies z | z
3. It is antisymmetric sicne z | y and y | « implies z =y

as desired. O

Terminologies

To state the Zorn’s Lemma, we need to clarify some terminologies:

1. Maximal: An element m € (P, <) is called the maximal if whenever € P such that © > m, we

have x = m.

2. Chain: If P is a poset, we say that the subset C' C P is a chain if for all x,y € C, either x < y or
y<uw

3. Upper bound: Given a subset C C (P, <), we say that « € P is an upper bound for C if > ¢ for
all c e C.

10



Zorn’s Lemma

Lemma 0.2: more like an axiom

Let P # @ be a poset and suppose that every chain C' C P has an upper bound, then P has at least
one maximal element.

Theorem 0.1

Let V be vector space and let S C T be subset such that S is linear independent and 7" spans V', then
there exists n basis B for V with SC B CT.

Proof:
Warning! The proof is LONG. @@

Let U be the set of linear independent subsets U of V with S C U C T. Notice that U # @ because S € U.

Therefore we can view U as a poset by declaring
U<U & UCU

We will now show that every chain in &/ has an upper bound. Notice that a chain is just a collection of sets
{Ua}aey such that

1. SCU,CT,Ya€eY
2. U, is linear independent, Va € Y
3. Va,peY, U, CUgor Uz CU,

Thus we let U = U Uy, we claim that U € U and it is the upper bound for the chain {U, }acy-

acY
It is easy to show that it is the upper bound. However, it is a bit of a work to do to show that

Uel.

First of all, we have U = U U,D2U,DSandeachU, €T = U= U U, C T, which implies

acY acY
that SCUCT.

Remark: ‘If X CV is linear dependent, then there exists finite subset Xy C X that is linear dependent. ‘
To see that U is linear independent, SFAC that it is linear dependent. By remark, there then exists

finite subset {u1,...,u,} C U that is linear dependent. Since U = U Uy, thusVie {l,...,n}, Jay €Y
acY
such that u; € U,,. Hence, uy € Uy, ..., un € Uy, . Since U,,’s form a chain, we know that 3i € {1,...,n}

such that Uy, 2 Uy, V1 <5 < n.

= {u1,...,un} € Uy,

However, we know that U,, is linear independent, which is a contradiction (linear dependent set being a
subset of a linear independent set). Therefore we obtain that U is linear independent, and thus it is an upper
bound for our chain.

By Zorn, we know there exists a maximal € U, we call it B.

11



To finish the proof, we show that B is the basis for V. Since we know B € Y, S C B C T, and
B is linear independent. Additionally, B spans V', because if it does not, we would have span(B) 2 T. (If
span(B) D T = span(B) 2 span(T) = V). Therefore 3 some ¢t € T such that ¢ ¢ span(B). However, this
gives us that B U {t} is still linear independent, which contradicts the maximality of B. It follows that B is
linear independent and it spans V, so it is a basis of V. O

Remark:
1. If we take S # @, then this says if T spans, then there exists a basis B C T

2. If we take T' = V, then it says that if S is linear independent, then there exists basis B such that
B2S.

Trailor for next lecture:

Example: We will see that all basis for vector spaces have the same size, and we call the size dimension.
Lecture 6 - Fri - Jan 19 - 2024
Goal: show that if V' is a vector space, then either
1. All basis for V are infinite, or
2. there exists n € NU {0} such that all basis for V' have size n.

We say that V is infinite-dimensional and write dimV = oo if (1) folds. Otherwise we say it is
finite-dimensional and write dimV" = n.
Once we establish this, we have facts:

(a) If W C V, then dimW < dimV.

(b) If V has a infinite linear independent set, then dimV = oo.

(c) If V has a finite spanning set, then dimV << oo.

Proof:

(a) Let B be a basis for W, then B C V and it is linear independent. Thus B can be expanded to a basis 5’
of V and since |B| < |B'|, we have dimW < dimV'.

(b) Let S C V be infinite independent subset of V', then we can expand S to a basis B and since B 2 S, we
have |B| = 00 = dimV = oo.

(c) Similar to part (b).
O
Corollary 0.1

If V = set of all continuous functions from R to R, then dimgV = oo (sub R denote R vector space?).
Remark: We can prove this using HW1Q2 and Result 0.1(b)

12



Corollary 0.2

R is infinite-dimensional as Q - vector space.
Remark: We can prove this using HW1Q3 and Result 0.1(b)

Infinite Dimensional Case

Proposition 0.4

Let V' be F - vector space. If V has a infinite basis B, then every basis for V is infinite.

Proof: of prop’n
SFAC there is a finite basis S = {v1,...,v,}. Since B spans, we can write each v; as a linear

combination of B, say

vi:ZAﬁ,.b \ip € F
beB

If we let B; = {b eEB:\p # O}, then B; is finite and v; € span(B;). Let B’ = By U --- U B, we easily know
that B’ is also finite, and
span(B’) D span(B;) > v; = S C span(B’)
= span(S) C span(B’)
= V Cspan(B)
= V =span(B’) - span(B’) cannot be bigger

which contradicts the fact that B is the basis, bacause taking away elements from a basis should not span

the whole vector space anymore. O

Finite Dimensional Case

Now we consider the case when V' has some (hence all) finite basis.
Suppose By = {uy,...,um}, and By = {v1,...,v,}, thus |Bi| = m and |Bz| = n. WLOG m < n, we
will show that m = n.

Lemma 0.3

Let V be vector space, and let {s1, ..., sp} be linearly dependent set, then there exist i € {0,1,...,p—1}
such that {s1,...,s;} is linearly independent and s;y; € span ({51, cee 51})

Proof: Let i € {0,1,...,p — 1} be the largest index such that {s1,...,s;} is a linearly independent set.
We know that ¢ < p — 1. Because {s1,...,sp} is linearly dependent, then by the definition of 4, the set

13



{s1,...,8i+1}, is linearly dependent, so there exists an non-trivial linear combination of {s1, ..., s;+1} equal

to 0. Then we have A;1; is 0 because {s1,...,s;} is a linearly independent set, thus
Ai18iv1 = —A1S1 — - — A8
N A1 A
8‘+1:_ S —r— —8;
’ Aig1 Nit1

= Si+1 € span({sl, ce sz})

as desired. O

Tutorial 2 - Mon - Jan 22 - 2024

Theorem 0.2: Axiom of Choice
Let C be a collection of non-empty sets (could be infinite, even uncountable), then there exists

J:C = Uyece A such that for all A € C, f(A) € A.

Example: If C = {A,} then there exists I-tuple (n4)aer such that n, € A,.

acl
Proposition 0.5

Let g : A — B be surjective, then there exists f : B — A such that go f = idg.

Theorem 0.3: Krull

Let R be a ring, where 0 # 1, then R has at least one maximal ideal.

Theorem 0.4: Tyohonoff

If {K,} is a collection of compact topological spaces, then the product space H K, is also compact.

«

Example 0.17: Controversies with AC

With Krull, we proved the existence of a maximal ideal in a ring R # {0}.

However, we do not know what M (the maximal) looks like.
Example: Consider R over Q, AC / Zorn tells us that there exists basis B. What does B look like?
1. Exercise: B is uncountable

2. Take S = {logp : p prime}, we know S is linearly independent, and we can extend it into a basis B;.

Lecture 7 - Mon - Jan 22 - 2024
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Theorem 0.5

Let V be a vector space, and suppose that V' has a basis B of size n < co. Then every basis for V has

size n.

Lemma 0.4: Exchange Lemma

Let S = {u1,...,um} and T = {v1,...,v,} be subsets of a vector space V, with S spans V and T is
linearly independent. Then for ¢ € {0,1,...,min(n,m)}, there exists a subset S; of S of size i such
that

{vi,...,v;} U{S\S;:}

still spans.

How does the lemma give us the theorem???
Proof: How does the lemma imply the theorem?

Suppose that V' has two basis of different sizes,
Blz{ul,...,um} & 82:{1)1,...,1)n}

WLOG, m < n < oco.

Suppose that m < n, hence we have min(n,m) = m. Taking ¢ = m in the exchange lemma, we see
that {v1,...,v,} spans V. (In this case where we are applying the exchange lemma, we are taking S = B
and T = By, s0 (S — B1) =, so {v1,...,um } U(S\B1) = {v1,...,vn}.) However, since n > m, this means
that By = {v1,...,v,}, is linearly dependent, contradicting the fact that it is a basis. O

Proof: Proof of the Exchange Lemma

Suppose we have

S={uy,...,umt & T={v1,...,0,}
—_——— —_————
spans lin. ind.
For i € {0,1,...,min(n,m)}, we want to find a subset S; C S of size ¢ such that

{'Ul, .. .,'Ui} U (S\Sz)

still spans V.
Base case 1: i =0,s0 S; =&

In this case, we simply have
{v1,...,v} U(S\S;) = S spans Vv
Base case 2: i =1

1. Case 1: 3 j such that u; = v,

We can take S; = {u;}, then we would have

(S\Si)U{vi} =S

15



2. Case 2: A j such that u; = v;
Consider {v1,u1,...,un}, we know that it is linearly dependent since v; ¢ S and S spans.

By our criterion, there exists i € {1,...,m} such that {vy,uy,...,u;—1} is linearly independent and
{v1,u1,...,u;} is linearly dependent, so u; € span({vy, u1,...,u;—1}). Let S; = {u;}. We claim that

{v1} U (S\{u;}) still spans

X ::{vhul, ey U1, U1y e - ,’U,m}
Notice that wy, ..., ui—1,Uit1,. .., Uy € span(X) and u; € span({vy,u,...,u;—1}) C span(X), so

{uy,u2,y ..., un}t C span(X)
= span({ui, u2,...,un}) C span(X)
= span(S) =V Cspan(X) CV
= V =span(X)

Now suppose the claim holds for i < k, 2 < k < min(n,m)

Inductino step: ¢ = £ By induction hypothesis, there exists a subset Sxy_1 C S of size k — 1 such
that
{v1, ..., vp—1} U (S\Sk-1) spans V

After relabelling, we may assume that

Sk—1={u1,...,up—1}
so that {vy,...,Vk_1,Uk, ..., Un} spans V.
Now we apply the base case with vi. By our criterioon, there exists ¢ > 0 such that {vg, v1,...,vk_1,
Uk, - - Uk4q ) 1S linearly independent and
{Uku V1yeo s V-1, Uk - - - ,Uk+i+1}
is linearly dependent and
Ugpip1 € SPAN{Uk, U1,y - ooy U1, Uk - ooy Uki } (1)

since T is linearly independent.
So now, Sk = (S\Sk) U {v1,...,vx} still spans.

To show this, since {v1,...,Vg—1, Uk, Ug+1,- .., Uy} spans V | it suffices to show that each of these
vectors is in
span{vl, sy Uk ULy - ooy Uty UWhoti 425 - - - 7U/m}
It is straightforward to see that vi,...,vk—1, Uk, ..., Ukt Uktit2,-- -, Uy are in the span. So it remains to

show ug;41 is, which follows from (f). The result follows by induction. O

If W C V are vector spaces and W is a subspace, if dimV < oo, then dimW < dimV with equality if
and only if W = V.

16



Proof: Let B be a basis for W, then B C V and is linearly independent, so we can extend B to be a basis
B’ for V and since B C B’, we have dimW = |B| < |B'| = dimV. Suppose that dimV = |B’| < oo, then we
have following

dimW =dimV <« B=B
< span(B) = span(B’)
& W=V

as desired. O

Example 0.18
What is (n € N)
1. dim (F™) =n

2. dimFlz]<, =n+1

Lecture 8 (Consolidate) - Wed - Jan 24 - 2024

Suppose V is a F-vector space, and suppose B is its basis, then all the basis of V' have the same size
as B.

Example 0.19

Suppose V = F" for F is a field, for instance, V' = R3. Notice if S C R3 and S either spans or linearly
independent and |S| = 3, then we can conclude that S is a basis.

Proof:

1. If S is linearly independent, then we can expand it to a basis B, since we know that |B| = 3, so B=S.

2. If S spans, then we can contract it to a basis B, since we know that |B| =3, s0 B= 5.

Example 0.20
1. What is dimF™ as an F-vector space? n
2. What is dimC as a C-vector space? 1
3. What is dimC as a R-vector space? 2
4. What is dimC as a Q-vector space? oo (HW1Q3)

Remark: C and R? are isomorphic with map 7' : C — R?, T : a + bi — (a,b), and the map is R-linear by
definition check.

17



Off Script

— A note on ”size”

6 6
Suppose we have a bijection between apples and { Bt
spoons as shown to the right. ()

(2.2}

In general, we say that two sets S and T have the same size (cardinality) if there exists f : S — T
that is one-to-one and onto.
A guy named Cantor noticed that there can be different sizes of infinite size. He showed that you

can never find a one-to-one and onto map from S = N to T' = set of all (right) infinite binary strings, i.e.

{616263 A {0, 1}}
But we wonder why?
Suppose we can find such map f such that

fN=>T
£(1) =[0]o000- --
£(2) =1[0]o00---
f3)=1]1f11--.
f(4)=010[1p- -

Now for *" digit of the f(i), we can construct a binary string that is not on the list by taking the
digit opposite to the one we have selected, and we know that the binary string we just created is indeed not
mapped by f.

Remark: However, notice that there is a bijection between

g: T —P(N) (set of all subsets of N)

So Cantor shows that there does not exist an onto map from 7' to P(N) for T' # @.

Two vactor spaces are isomorphic if and only if their basis have the same size (i.e. there is a bijection

between).

Theorem 0.6

Let F be a field, and let V' and W be F-vector space with basis B and C respectively. If there exists a
one-to-one and onto map f: B — C, then V= W.
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Let’s try to build a linear map T : V — W from f:

veV~uv= Z A - by Ay € F & only finitely many \p’s are non-zero
beB

= T(v) :T<Z)\b-b>

beB

=Y NT(®)  T(b):= f(b)

beB

Proof: We define T': V — W as follows: If v € V| we write v = Z Ap - b; Ay € F & only finitely many \p’s
beB
are non-zero, and we define T'(v) = Z X - f(b). Since we know that B is a basis, so the linear combination

beB
of each v is unique. This tells us that T is well-defined.

1. Proof showing it is onto

Notice T is onto since if w € W, we can write w = Z% -C; 7. € F and only finitely many ~.’s are

ceC
non-zero. And since f is a bijection, thus this is

D vrw  fO)=T (ZW(W)
bess beBs

which implies that T is onto.

2. Proof showing it is one-to-one

By HW2WUS5, we know that a linear map T is one-to-one if and only if ker(T") = {0}. Therefore, to
prove that T is one-to-one, it suffices to prove that ker(T) = {0}.

If T(v) = 0, then we write v = Z Ap - b; A\p € F and only finitely many Ap’s are non-zero. Then we

beB
have

T(w)=0= T(Z)\b-b>:0

beB
= Y - f(b)=0
beB
= M=0VbeRB
= v=0
= ker(T)=0

as desired. O

Terminologies

Now we need to introduce a bit more terminologies to progress further.
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Recall that T : V — W linear, we have
im(T) CW ker(T) CV

We call the dimension of the kernel of T' as the nullity, and the dimension of the image of T' as the rank.

More specifically

Definition 0.12: rank & nullity

dim ( ker(T)) = nullity(T")

dim (im(T)) = rank(7T)

Theorem 0.7: The rank-nullity theorem

Let V and W be finite dimensional F-vector spaces, T : V' — W linear, then we have

dim (V') = rank(T") + nullity(7")

Proof: Let d be the nullity of T" and e be the rank of T', so there exist

basis {u1,...,uq} for ker(T)

basis {w1,...,w.} for im(T)

Then there exist vy,...,v. € V such that T'(v;) = w;. Claim: {uq,...,uq,wy,...,wy} is basis for V' O

Lecture 9 - Fri - Jan 26 - 2024

Exercise: Prove that M, (F) is not commutative for n > 2
Proof: Given that both A, B € M, (F), and suppose C! = A - B, thus we can obtain that

n
CHirj) =D ainbr
k=1
However, on the other hand, suppose C? = B - A, we can obtain that
n
C2(i,§) = bikan,
k=1

Note that C1(i,j) and C?(i, j) are not necessarily equal, and thus we find that multiplication for matrices
€ M, (F) is not commutative. O

Exercise: Show that if R is a ring and n > 1, then we can make a ring M, (R) of n x n matrices with

entries in R.
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Proof:
O

Exercise: Let D, (F) and U,(F) denote respectively the set of n x n diagonal and upper-triangular
matrices with entries in F'. Show that D, (F') and U, (F') are subspaces and subrings of M, (F'). What are
their dimensions?
Proof:

O

Exercise: Check directly that left multiplication by A is a linear map from F"™ to F™.
Proof:
O

Exercise: Show that if n > 2 then there are nonzero nilpotent elements in M, (F).
Proof: Consider the matrices S € M, (F) such that S(i,j) =0 for all ¢ > 5. O
Example 0.21

We first finish off the proof for the rank-nullity theorem.

Proof: Let T': V — W be linear, V,W are F-vector spaces. dimV,dimW < oco. Also let rank of T' =
dim(im(7) € W) < oo, and nullity of T' = dim(ker(7) C V) < oo. Suppose d = dim(ker(T")) = nullity
of T. Then there exists a basis {v1,...,vq} for ker(T). Also Let e = rank(T), thus there exists a basis
{w1,...,we} for im(T). Goal: show that d + e = dimV.

Since we know that w; is in im(7'), so we know that 3 wuy,...,ue € V such that T(u;) = w;.
Claim: {vy,...,vg,u1,...,u.} €V is a basis for V. To see that the set spans, let v € V' and we will show
that v is a linear combination of {v1,...,v4,u1,...,uq}.

Remark: How can we solve v = ajvy + - - + aqug + B1u1 + - - - + Beue. Notice if we apply T to both sides:

T(v) =T (a1v1 + -+ + @gug + Prus + -+ + Belte)
Tw)=o1T (v1) + -+ T (va) + B1T (u1) + -+ - + BeT (ue)
T(v) = frwy + -+ + Bewe < basis for im(T)

Look at v — Byu; — -++ — Bete. Notice T (v — fru; — -+ — Bette) = T(v) — Bwy — -+ — Bewe = 0, s0
v—Brug — - — Beue is in ker(T). So Fay,...,aq € F such that v — f1ug — -+ — Bete = ayvy + - -+ + aqus.
Back to the proof
Since wy, . .., w, spans im(T"), there exists f31,..., B € F such that T(v) = fywi +- - - + fewe. Then

this means v — B1uy — . .. Bete is in ker(T'). Hence Jay, ..., aq € F such that v — Siug — -+ — Bette = ayv1 +

oo+ agug = v € span {vy, ..., Vg, U1, ..., Ue}. To show that vy,...,vg,u1,...,u. is linearly independent.

Suppose that ayvy + -+ + agug + frug + -+ + Beue = 0. Applying T gives

T (aqv1 + -+ 4 aqug + Brur + ... Beue) = T(0)
:>alT(v1)+~~~+adT(vd)+61w1+-~~+,Bewe:O

since wy, ..., w, are linearly independent = 5 = -+ = B, = 0. So now, ajv; + -+ agug = 0 = a; =
-+« = agq = 0 since {vy,...,v4} is linearly independent. O
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Theorem 0.8

If V is n-dimensional, n € N, then V & F™

Proof: V has a basis {b1,...,b,}, F™ has a basis {e1,...,e,}, where e; = (0,...,0,1,0,...,0). We have a
bijection between the bases, which extends to an isomorphism from V to F™. O

Matricies

Let F be a field. Given m,n € N, we let M, ,(F) denote the set of rectagular m x n arrays,

ai1 a2 a3z -+ Qin

a21 Q22 Q23 - A2p
A =

Am1 Am2 Am3 0 Gmn

where the a;; ’s are in F'.

Terminologies

We call a;; the (i, j)-entry of A and we call A an m x n matrix with entries in F' and we write A(i, j) = ai;.

Example 0.22

2 0w 7
€ M, 5(C
<e 3.1 —6) 23(C)

Notice that M,, ,(F) is an F-vector space.

a1 a2 a1z - Qin bir bz bz - bin
a21 az2 @23 - Q2pn b2y bao bas -+ ban
+
Am1 Am2 Am3 o Omn bml bm2 bm3 T bmn
a1 + bu a2 + b1z a3 +biz - aip +bin
a1 +ba1  asa +bap  asz+bagz - agn +boy
Am1 + bml Am2 + bm2 am3 + bmd e Amn + bmn
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Matrices preserve closedness under addition and scalar multiplication

(A+ B)(i,5) = A6, j) + B(i, j)
(AA) (i, 5) = A+ (A(i,4))

The 0 element is

0 0

Om,n:

0 0

For 1 <i<m,1<j<n, welet
0 0 0 0
0 0 0 0
Eij= :

7 0 0 1 0
0 0 0 0

where a;; = 0 (i*" row, j'" column)

E;j(k,7) = 01051 for 1 <k <m,1<j<n.

1 ifa=0b
6a,b =

0 otherwise

1 ifi=kj=CL
Ea b —

)

0 otherwise

Claim: {E;; : 1 <i<m,1<j<n} is a basis for M,, ,(F)

Proof: of spanning
ai;p  aiz2 - Aim
A= : ST € My n(F)
aml Am2 - (mn

Thus we have

A=anFEi1+anbi2+ -+ ainFEin
+aiBor +aipkag + - + arn b,

_l’_
+ a1 Em +a12Ep + -+ a1n By
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as desired. O

Proof: of independence

If Z Zcm ‘B, ;j =0=¢; =0, Vi,j by looking at the (¢, j)-entry. O

i=1 j=1

Corollary 0.3

M, n(F) = F™ as F-vector space.

Proof: We know that M,, ,,(F') has a basis of size m - n. O

Let m,n,p € N. We have a multiplication - :

My (F) X My o (F) = My, p(F)

Remark: Notice that the columns of the first matrix and the number of rows of the second matrix must
be the same.

Example 0.23

Let m=2n=3,p=4.

10 2 0
R AR (o el
0
Exercise: For instance, row 1, column 4 (aq,4) would be (1 —26) | 3 | =1-04+(—2)-3+6-2=06.
2

Conjecture
Ve > 0, we can find an algorithm for matrix multiplication n X u matrices runs in O (nz‘“) time.
Lecture 10 - Mon - Jan 29 - 2024

Let F be a field, and m,n € N, then M,, ,(F) is the set of m x n matrices with entries in F.
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Let A€ My, n(F), B€ M, ,(F), and C € M, ,(F), and also let i € {1,...,m} and j € {1,...,q}.

<(AB i(iml lk)C(kg)
k=1 =
A

(a5 ) Z (st,t))cw

Notice that ((A -B) - C’) (i,7) = (A (B C)) (i,7), thus matrix multiplication is Associative.

=1

Exercise: Show that matrix multiplication is also distributive. In particular,

A(B+\C) = AB + AAC

Definition 0.13: M, (F)

We use M,,(F) to denote M, ,,(F).

M, (F) is a ring.

Proof: We saw that M, (F) has +, and the addition axioms are satisfied since (Mn(F ), —|—) is a F-vector
space (and hence an abelian group). Recall we also have multiplication:

Mo (F) x Mo (F) — My (F)

-

where Fj is the i** Fibonacci number.

Remark:

and the matrix multiplication is associative. Moreover, the multiplicative identity is (4,j) = d;;.
Last but not the least,
Exercise: Distributivity (relation between addition and multiplication).
Therefore, M, (F') is a ring. O
Example 0.24: Idempotent in M>(R)

Elements in M5(R) that are idempotent:

bl b L
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Exercise: Show that for a,b € F\{0},

a b
z 1l—-a
is idempotent when a(1 — a) = zb.

Proof: We can get that
n
a b B a® + bx ab+b—ba
¢ 1—a) \ar+z—az br+(1-a)?
Therefore, if a(1 — a) = xb, then we will have a? + bx = a and bz + (1 —a)? =1 —a. O

Definition 0.14: Diagonal

A matrix D € M, (F) is called diaginal if D(i, ) = 0 whenever i # j.
Remark: The set D,,(F) of n x n diagonal matrices is a subring of M, (F') and is also commutative.

Definition 0.15: Upper Triangular

A matrix U is upper triangular if it is of the form

Uix Uiz - Ulp
0 wz -+ Uz

U= .
0 0 Unn

in particular, U(i, j) := 0 when i > j.

Lecture 11 - Wed - Jan 31 - 2024

For Eqp, Ec.q € M, (F), then we have

0 ifb#c

Ea,b . Ec,d =
Ea,d ifb=c

Proof: Def’n check. O

What is E7; 7
Answer: 0if i # jor E;; if i = j.
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Proposition 0.6

Upper-A matrices form a subring of M, (F).

It is easy to check that it has 0 and +1, and it is closed under addition. Here, we will prove that it
is closed under multiplication:
Proof: For two matrices A, B € M,,(F), we can write them as in the form

A= ZaijEij B = ZbklEkl
i<j k<l
Therefore

A-B= Z Z a;ij Bijbi Bk

i<j k<l
= E E aijbr EijEpy
1<j k<l £0 @ j=k
= Z aijbjEq
i<j<l

1
so the (i,1) entry is Z a;;b;1, which implies that it is an empty sum when ¢ > j, which then implies that
j=i

A - B is upper-A. O

GL,(F) — General Linear group of F

M, (F) is a ring, so its units form a group. We let GL,,(F') denote its set of units.

Definition 0.16: Invertible

A matrix A is called invertible (or non-singular) if it is in GL, (F') and it is called non-invertible or

singular otherwise.
Theorem 0.11

(a Z) € GLy(F) if and only if ad — bc # 0.
c
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Proof:

1. (=)
Suppose ad = be and A is invertible, then we know that there exists B € GLy(F') such that

o d) (D)
(- L))ot
(DL

which implies that a = b = 0. Similarly, we have ¢ = d = 0. However, this contradicts the fact that

Consider l

B (a b> = 1. Hence we have that ad # bc.

c d
2. («&=)
. . 1 d —b .
Since we have ad — bc # 0, thus we consider B = =A
ad—bc \—c a

wo0 hoo. O

For what follows, we will think of F™ as M,, 1 (F)

Example 0.25

‘We have

Remark: If A€ M,, ,(F)and ve M, 1(F),s0 A-ve M, (F)=Fm.
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If A is a m X n matrix, then it can be viewed as a map
Tq: F" — F™

given by
ai ax

Ty =A
Gn Gn

Example: Notice that T'y is linear.

Universal Property

] Let V and W be vector spaces and let B be a basis for V', Our goal is to understand the linear maps
from V to W (hard). Universal Property tells us that:

Let f : B — W be a set map, then there 3! (exists a unique) linear map 7' : V. — W
such that T‘B = f (with restriction to B).

Lecture 12 - Fri - Feb 2 - 2024

Definition 0.17: Linear Transformation

Let V,W be F-vector space, and T : V — W linear, we’ll say T is a linear transformation. When
V =W, we'll say that T is a linear operator.

Universal Property

We can make linear transformation
T:V W

as follows:

We fix a basis B for V and specify what T" does to B (no constraints) and then T is uniquely

determined.

29



Example 0.26

Suppose we have

T:R?> 5 R3
_ _5_
1
0 = | -7
L _\/g_
_ _5_
0

= | -7
1
L _\/é_

Thus we have

Theorem 0.13

Let V and W be vector spaces. Let B be a basis for V. If f : B — W (set map) then there exists linear
transformation

T:V W

such that T'(b) = f(b) for all b € B. Moreover, if S : V — W such that S(b) = f(b) for all b € B, then
S=T.

Proof: We recall that if B is a basis for V, then if v € V', there is a unique linear combination

v = Z Ap-b Ap € F only finitely many are non-zero
beB

Then if T: V — W is linear and T'(b) = f(b) for all b € B, we must have

T(Z)\b-b> => T(N\-b)

beB beB

=> X f(b)

beB

so we see that if this T is linear, so it is unique. Let’s check if T is linear:
Remark: T is linear iff T'(v + Aw) = T'(v) + AT'(w) for all v,w € V and A € F.

Hence let v,w € V and A € F, then we can write

’U:Zab'b w225b'b

SO

vt dw =Y (ap+ ABy) - b
= T+ w)=Tw)+ \T(w)

Thus completing the proof. O

30



In what follows, we identify

ai
a2
Fn(—>Mn’1(F): . ta1,...,an € F
an
F™ =¢— M, 1(F)
Every linear transformation
T:F*"—=F™

is of the form T'(v) = Av € F™, v € M, 1(F) for some A € M,, ,(F).

Remark: Notice if A is matrix, then v — Awv is linear.
Proof: Take the standard basis for F”. Let

then A(e;) = T'(e;). Since A and T does the same on a basis, then they are the same by Universal Property.
O

Example 0.27

Find the matrix of the linear operator, T : R? — R3, where T rotates points counterclockwise 45° with

-1 -t
o

respect to the origin:
1
0

0
1

then the matrix for T is

Example 0.28

‘What does the linear transformation

do to the unit disc?
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Exercise: Ellipse.

Definition 0.18

We say that the matrix

| | |
A=|T(er) T(ea) -+ Tlen)

is the matrix of T with respect to the standard basis.
We'd like to extend this idea to understand linear transformation between abstract finite dimensional
vector space.
Example 0.29

Let

then

is a linear transformation.
Let the following be ordered set

B=(1,z,2%) forV
C=(1,z,2% 2% for W

so we can use B and C to give us elements of V and W coordinates:

a
[a+bx+caj2}82 b

{a+ﬂ$+7$2+5$3]c =

> 2 X R
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Tutorial 4 - Mon - Feb 5 - 2024

/\‘L/kt __———-—-——:Q"\-// : \ﬂ_ ))

>) < @ | ; A

( C;‘ ’ é;@ 3 m 7—04/7 (,I/)PQ‘/‘ /71/9105/“,4 }"(7/7~
69 q (7 Ve

Regular Language
Definition 0.19

Z be finite alphabet.
e.g. {a,b}
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Definition 0.20: Semigroup

Z* = set of finite strings (words) on Z

e.g.
Z ={a,b} = Z 3 a, ab, baba, abba, aaaaa, . . .

Example 0.30

a
(_7 a, b
Start @ (-7
- Starting State \ a \Q

- Accepting Stete
- Transition

aabaa —> rejected b

babbaa —> accepted O

Definition 0.21: DFA
A deterministic finite-state automaton (DFA)
1. input alphabet Z

2. has finite set of states

Definition 0.22: Regular Language

The set of all strings accepted by a DFA is called a regular Language.
Theorem 0.15: Church-Turing Thesis

Every algorithm can be similated by what’s called a Turing machine, whuch is simulated with finite

number of states and two stacks.
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Example 0.31

stolC
1 £
\ /D 5 t.\qg

< eocepting biner
o )

U Mol Hluion ol et f_rﬁ"‘yi(‘*(jz Lyt 2ver
\\ -

\ Lo

O Nutqoe N Q\’ 3

Definition 0.23: Adjacency Matrix

See the example below:

Example 0.32

Given a DFA, we associate an adjacency matrix as follows:

stax e )
o G o Q
©amSime
o 18
T / 5
e T =

) e o
&

We define matrix A whose (i, )" entry is the number of paths from g; to g;:

01 010
01 100
A=1]0 01 0 1
0 00 2 0
0 0011
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Let A be the adjacency matrix of DFA with states g1, ..., qs, then A™(i,j) = number of paths of length
n from ¢; — g;.

Proof: By induction.
1. Base case: definition
2. Hypothesis: Yes for length &
3. Proof Step: Yes for length k£ + 1
orz. U
Now we can compute the strings accepted by DFA’s. For an s x s adjacency matrix A, we have

€1
) 1 g; is accepted
v=|: where €; =
0 ¢; is not accepted

and

Example 0.33

Ql

Have wA™V is the number of strings of length n accepted by the DFA.

Proof: Number of strings accepted by DFA is the number of paths accepted of length n started from ¢;. O
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Example 0.34

Broe®A " o fouy
\3/\“ e e
C e e
Dol
U‘C‘\QQJ
e %
]
= melle \\\Z‘T\‘
, o)
Eh = 2Ee L 2S
A= E} 5 A“(Q_e_b)
= Fn_‘_\ e O OIS
L T
0 R e A‘*»(i;‘g \
DO hGE

Lecture 13 - Mon - Feb 5 - 2024

Definition 0.24: Ordered Basis

An ordered basis B for V is a list vy, vg,

., vy, of distinet vectors such that {vy,
V.

.,Up} is a basis for

Significance:

WE can use ordered bases to endow vector spaces with coordinates.

But how do we do this?
Given v € V,

1. Step 1:

Express v uniquely as a linear combination of our ordered basis

2. Step 2:

Cn
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Example 0.35

0 0 1 2
V=R3and B=| |0|,|1]|,]|0] |, whatis [3| *?
1 0 0 4 5
4
Solution: The answer is |3
2
Theorem 0.18
dimV = n, the map
0.V —-F"
0(v) = [v]s

is a linear map that is an isomorphism.

To prove the theorem, we first prove the following proposition.
Proposition 0.7

If V and U are two n-dimensional vector spaces (n < co) and T : V — U is linear then

T is 1-to-1 < T isonto < T is isomorphism

Proof: We use Rank-Nullity Theorem,

ker(T) = (0) = dimV =dim(im T) = onto
Similar proof follow. O
Proof: of theorem To see that f is linear, we must show that

O(v + Aw) = 0(v) + \0(w) VoweV, \eF

€1 di
Recall B = (v1,...,v,),let [v]g= | i | and [w]g = | : |, then we have

Cn dy,
vV=cCcv1+ -+ cpun
w=dv; + -+ dpv,

S0
v+ Aw = (1 + Ady)vy + -+ + (¢ + Ady) vy,

which gives us
[v+ Aw|g = [v]g + Nw]s
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(0). Suppose that

Therefore, to show that 6 is isomorphism, STP 6 is one-to-one, so STP ker(6)

as desired.
0
O(v) = , 80 we have
0
0
Wp=|:]=0-vi+---+0-v,=0
0
= ker(6) = (0)
as desried. O
Commutative Diagram
o pA — T o5 A 0)es
owes=tp €V — TS
C\(S' = o= “ \)
Z J
f Ci
N — A
v oY aeman (P s Lunle
o > [
AN
(1=

3! a matrix A that makes the diagram commutative. Le.
[U}B cFm

VoeV, Tw).=_A
mxn nx1

Example 0.36
Let V = R[z]<2 has basis B = (1,z,2%) and W = R[z]<3 has basis C = (1,z,2%,23). Let T:V —» W
p(t) dt. Find A € My 3(R) that makes the diagram commutative.

such that T'(p(z)) =
0
Look at the standard basis for R3:
1 0 0
eg= 10|, ex= |1, e3=|0
0 0 1
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Thus we have

0 0 0
e — 1 e 0 e3 = 0
1 0 ) 2 = % ) 3 — 0
0 0 3
which implies that
0 0 0
1 0 0
A= 1
0 5 0
00 %
Definition 0.25
In general, the matrix A with
A = V U= =

v l . l
I !

)
Ly /—f o =™ Le

is called the matrix of T" with respect to the ordered basis B and C and we write

A=[Tlsc
(denoting convert B to C).
How do we find [T]g,¢?
Suppose we have
B= (b17 7bn)
C= (Cla . ,Cm)
then we would have
| |
A=[Tlpe= | [T(b1)le [T(bn)le
|

a m X n matrix.
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Example 0.37

Let V = Rz]<2 and W = {p(z): deg(p) <3,p(1) =0}. Let T : V. — W such that T'(p(x))
p(z)(x — 1), which is a linear map. Find [T]gc with B = (z%,2,1) and C = (x — 1,2% — 1,23 — 1).

Proof: Notice that T'(z?) = 2® — 2% = (2® — 1) — (22 — 1), and with similar process, we can find that

e
[T(z*)]e = |-1
L 1 .
[—1] 0 -1
[T(z)]le= |1 Tlge=|-1 1 0
KN 1 0 0
1
[T(1]e= |0
0

as desired. O

Lecture 14 - Wed - Feb 7 - 2024

Recall the commutative diagram,

Theorem 0.19

ForalveV,

Proof: Consider the LHS, for v = b;, we have

LHS = [T|gclbjln

=

&
a
—

0

= 4" column of [T c
= [T(b))le

41



so we have [T]gc[bjlg = [T'(bj)lc for j=1,...,n

Vo Fm
V= [T]B,C['U]B
v [T'(v)]s

so by Universal Property, they are the same. O

Composition

Suppose we have

. Hence the linear transformation for

given by
and the ones given by

agree on a basis for V

\%4 W U
n-dim m-dim p-dim
B:(bh...,bn) C:(C1,...,Cm> D:(dl,...,dp)
Therefore
T:V->W
= SoT:V U
S:W-=>U

Now we are interested in what the relationship is between

[SoTlgp &

Theorem 0.20

Tsec & [Slep

We have
[SoT|sp =[Slen-[Tlse
N — N N~
pXxXn pXm mxn
Proof: We have the commutative diagrams
v Lo w w LU
L | L, !
F— Fm Fm 228 e
Thus concatenating the two diagrams gives us
v LT ow S, 0U
Lo ] |
m— F™ —— F?
Therefore we have
=7 = [S(TW))lp
L —— = [S]Q'D[T}B C['U]B



hence

[S o Tpplvls = [S(T(v)lp = [Sle,p[T]s.clv]B
= [SoT]sp = [Slep[T]sc

) B

thus we complete the proof. O

Remark: If Ay, Ay € My, n(F) such that Ajv = Agv Vv € F™, then 4 = As.

Midterm
Definition 0.26: Midterm
The midterm is 1 hour and 50 minutes long consisting four parts.
(a) 5 multiple choices, (2 marks each, 10 marks in total)
(b) 5 true or falses, (2 marks each, 10 marks in total)
(c) 3 parts, linear independece, dependence, and span (10 marks)
)

(d) 3 parts, matrices and linear transformation (10 marks)

Lecture 15 - Fri - Feb 9 - 2024

Here we introduce a second proof for the Theorem introduced above (instead of depicting diagrams).

We first introduce a lemmas:
Lemma 0.5

Let A, B € M, (F), if Av = Bv for all v € F™*, then A = B.

Proof: of the lemma
This is easy to see if we pass in the standard basis vectors to show that each entry of A is equal to the
corresponding entry in B, thus A and B are equal to each other. O

Proof: of the theorem

Let [v]g € F™, consider [S]¢,p[T]B,c[v]s. Hence by associativity, we have

SleplT1s.clvls = Sle.p([Tlsclels)
= Sl (IT(0)]c)
= ST )

Notice that [S(T'(v))]p = [(S o T)(v)c]. On the other hand, [S o T|pclv]s = [(SoT)(v)]p. O
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Key properties:
L [T]gclvls = [T(v)le
2. [Sle.plwle = [S(w)lp

3. [SoT]gp = [Slep[T]5.c

Example for Commutative Diagram Composition

Suppose we have a vector space V with ordered basis B = (b1, ..., by,), and a linear transformation T : V' — V|
(more precisely, a linear operator).
Remark: Often it is the case that we have another ordered basis C for V' and we would like to know that

relation between [T)g and [T]c.
Definition 0.27

We let [T)p denote [T,

)

Example 0.38

Suppose for a linear transformation

T:R® — R?

x T+ 2y + 32
T Y =|z+y+z

z 204+ y+z

and suppose we have two ordered basis B and C such that

o] [o] [1
B=1|o|,[1],]0
1| |o] [o]
1] 1] [1]
c=1|(o],|1],]1
o] |o] [1]

We want to find [T]g and [T]c.
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We first find [T]g:

3 1
1% column : T(by) = |1| = |1
L~ _3_ B
2 1
2" column : T(by) = |1| = |1
1] 2] 5
2
3" column : T'(bs) = [1| = |1
2] 11 5
1 1 2 0 1 3
Thus we have [T]Jg= |1 1 1| as desired. Similarly we would find [T]ec = -1 -1 -1
3 2 1 2 3 4

Let S : R® — R? be the linear map with the property that S[v]s = [v]c, so S is a matrix.
Therefore for matrix S:

1 0 0
1% column : S[by]g = [b1]e = |0 = [0] = |-1
10 1] c | 1]
[0 0 -1
2™ column : S[be]s = [bo]e = [1| = [1]| =1
10 0] c | 0 ]
1 1 1
3" column : S[bs|z = [b3]e = |0| = [0 = |0
10 0] c 10
0o -1 1 0 0 1
Thus we have [S]ge = -1 1 0] as desired. Similarly we would find [S]lcg= |0 1 1
1 0 0 1 1 1
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We have
[S]s—c[Slcwn =1
[Sle—n[S]lp—c =1
[Sle=BlT8[SIB=c = [Tl
Lecture 16 - Mon - Feb 12 - 2024
Recall last lecture’s example. In general, if for vector space V with ordered basis B = (b1,...,b,),

suppose T : V' — V is linear, then

Definition 0.28: Similarity

Let A and B be n x n matrices. We way that B is similar to A if there exists S € GL,(F) (units of
M,,(F)) such that B = S~1AS.

Proposition 0.8: Similarity is equivalence relation

Similarity is equivalence relation.

Proof: We need to prove reflexivity, symmetry and trnasitivity:

1. Reflexive
We have A = I7'AI, so A is similar to A.

2. Symmetric
If B is similar to A, then there exists S € GL,(F) such that B = S~1AS, thus we have

A=SBS™'=(STH)'B(S7)

3. Transitive

If A is similar to B which is similar to C, then we know

A=S"1'BS
B=T"'CT

which yields us that
A= (TS)'C(TS)

30
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Definition 0.29: Notation

If A and B are similar, we write A ~ B.

Definition 0.30: Trace

Given an n X n matrix A, we define the trace of the matrix as

tr(A) = sum of entries on the main diagonal

For A, B € M, (F), we have
tr(AB) = tr(BA)

Proof: we have

i=1
=> (Z A(ik)B(ki))
i=1 \k=1
tr(BA) = Z <Z B(ik)A(ki))
i=1 \k=1
same thing. O
If A and B are similar, then tr(A) = tr(B).
Proof: We know that for some S € Gl,(F) we have
B=S57145

Thus we let X =S and Y = AS~!, which gives us that
tr(B) = tr(XY) = tr(YX) = tr(4)

as desired. O

Since [T]p and [T]¢ are similar, so
tr([T]s) = tr([T]c)
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Definition 0.31: Notation

If V and W are F-vector spaces, then we write either £(V, W) or Homp(V, W) for the set of linear
maps from V to W.

Example 0.39

Homp (F®, F™) = My, ,(F).

Let V and W be F-vector spaces, suppose that dimV = n and dimW = m, then we have

Homp(V, W) = M, »,(F) as F-vector spaces

Suppose we have S, T € Homp(V, W), we know that for v € V', we have (T'+ S)(v) € W. Moreover,

(T + S)(U1 + )\'UQ) = T(’Ul + )\’Ug) + S(’U1 + )\UQ)
= T(Ul) + T()\’U2) + S(’Ul) + S()\'UQ)
Homp(V, W) 3 0: = Oy () = 0

—T is also linear

Thus we have that Homp(V, W) is an abelian group under +.

Lecture 17 - Wed - Feb 14 - 2024
Proof: of the above theorem: Define

¥ : Homp(V, W) — My, o(F)
Y(T) = [T
T:V W

We need to show that v is linear and one-to-one and onto.

1. Linear
‘We want to show that
Y(T + AS) = %(T) + Mp(S)

forT,5:V > W and A € F. ie.

[T+ AS]g.c = [T]s,c + AlS]BC
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Recall that j" column of y : V. — W, [y]s.c, is [y(b;)]c. STP the j** columns are the same. We know
that

" column of [T + AS]g.c = [(T + AS)(b))lc

= [T(b;) + AS(b))le

= [T( i)le + [AS(b;)]e
3™ column of [T]sc + A - 5" column of [S]sc
4™ column of ([T]sc + - [S]s.c)

which implies linearity.

2. One-to-one
STP ker(¢) = (0), suppose T € ker (1)),

Y(T)=0
= [T]gc=10]
= 4t ColumnofT =0 forj=1,2,....n
= l forj=1,2,....n
= T(0;)=0 forj=1,2,....,n
= T=0

3. Onto
Consider ¢ : Homp(V, W) — M,, »(F), we let

air aiz2 - Qin

a1 Ag22 -+ A2p
A=

apl Ap2 *** Qpp

we must find 7' : V' — W such that ¢(T) = [T]s.c = A. We need to find the j** column of
Qi
Tpec=| : & ayjcitagicat - +am;cm = T(b;). By Universal Property, there exists T : V — W

QApj
linear such that T'(b;) = aijc1 + agjca + -+ - + GmjCm, V j, which implies that

Tlsc=4= ()

thus we complete the proof. O
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Rank, Nullity, Transpose

We know that both M,, ,(F) and M, ,,(F') both have dimension m x n. In particular, they are isomorphic.
We define the transpose map

T My (F) = My (F)
A~ AT
Flipping along the main diagonal

Example 0.40

For A, B € My, ,(F), we have (A + AB)T = AT + ABT | in particular, 7 is a linear map.

Theorem 0.23

If A€ My, n(F), B€ M,,(F), then
(AB)T = BT AT

M=

Proof: Consider (AB)” (ij) = (AB)(ji) = Y A(jk)B(ki).

=~
Il
—

NE

Similarly BT A" (ij) =Y~ B (ik) A" (kj) =
k=1

B(ki)A(jk).

=

=1

Thus they are the same. O

Corollary 0.5

(A1Ay - Ad)T = A4TA; 1T - A;T whenever the product makes sense.

Example 0.41

Consider D : R[z]<a — R[z]<; be the differentiation map, with basis B = (1,z,22),C = (1, z) respec-
tively. Suppose we want to find a linear map 7" : Rlz]<; — R[z]<z such that [T]e,5 = [D]f ¢

0 0
010 .
[D]s,c = 00 9 = Dge=1[1 0

0 2

Hence we have

0 0 0
Tles= |1 — [T(1)]g = |1| and [T(z)]z = |0| = T(1) = z,T(z) = 22>
0 0 2

thus T'(a + bz) = ax + 2ba?.
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Lecture 18 - Fri - Feb 16 - 2024
Let A be a m x n matrix in My, ,,(F), then we know that A indces a linear map:

Ty:Fm» —L o pm

! !

My 1(F) =555 M1 (F)
Tw)=A-v
We define
1. rank(A) :=rank(Ty4) = dim(im(T4))
2. nullity(A4) := nullity(T4) = dim(ker(T4))
3. null space of A :=ker(Ty4)
In general,
ail a2 0 Qin
(. 2m) @21 @ v G2p
Am1 Am2 " Gmn
=z1[a11,a12, .., 01,] + Talaz1, age, ..., a2n] ++* + Tin[Am1, Am2, - -+ s Ginn

Corollary 0.6

Let A € My, (F'), then rank(A) = dim(span(col of A)), i.e.

A=1¢ ¢é& - ¢, G € My, 1(F)

= rank(A) = rank(span({ci,¢3,...,¢én}))

Proof: We know that rank(A) = dim(im(7T4)), where

F" 5 F™  Tav)=A-v

T X1
i) X9

Noticethat Ta | . | =A-| . | =216+ -+ axnén, s0im(Ta) C span({ci, c3,... ¢} ). Notice ¢j € im(Ty)
T LT

since ¢j = A -e;, so span({¢i, 3, ... ¢, }) € im(T4a), so rank(A) = dim(im(74)) = dim(span({ci, é3,...¢n})).
O
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Definition 0.32: Column Rank & Row Rank

fA=1|é & - ¢

, we call dim(span({ci,¢é3,...6,})) the column rank of A, if A =

, then we call dim(span({ri,73,...7n})) the row rank of A.

o
- Tm —

Theorem 0.24

Let A be m x n, then row rank A = column rank A

Lemma 0.6

Let A be an m x n matrix. Let &1,¢3,...,¢, € My, 1(F') be a basis of the span of columns of A, then

there exists a p X n matrix R such that

A= & - ¢ |R, letC=1¢ - ¢

e | |
Proof: Let U; denote the 4t column of A so

A= |u a - u
| .

By assumption, each U; is in the span of ¢i,¢c3,...,¢,. In particular, there exists 715,725,

...,Tpj € F such
that

-

Uj=rijcr+ - +1pi6p

Let R(ij) = r4;, then we have

T11 T1in \

Tp1 Tpn ‘ |

d

Proof: of Theorem
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Let p = column rank of A and let ¢i,¢3,...,¢, be a basis for the column space of A. Let C' =

.
| | s
i --- ¢, |- Then there exists a p x n matrix R such that A = C- R. Write R = | . .|, then
| | o
e
notice every row of C - R is a linear combination of 71, ...,7,, which implies that every row of A is in the

span({ri,...,7p}). O

Lecture 19 - Mon - Feb 26 - 2024

(1) How does one find the null space of a matrix?

(2) How does one find the image of a matrix?

(3) How does one find the inverse of an invertible matrix

(4) How does one find the rank of a matrix?

(5) How does one find the [z]p for x € V, B an ordered basis?
(6) How to check if a set is linearly independent?

(7) How do we check if a vector is in the span of a set?

Remark: For 1 and 2, we typically want to find a basis for these spaces.

Vector Equations
For A € My, »n(F), & € F™ and b e F™, a vector equation is in the form of
AT =b

Moreover, when b = 0 we call the equation homogenous, otherwise we say it is non-homogenous.

Elementary Row Operations

Ler A be an m xn matrix, we will say A’ € M,, ,(F) can be obtained from A via a elementary row operations
if one of the following these holds:

(a) The " row of A’ is ¢ times i'" row of A for ¢ € F and all other rows are the same.
(b) We swap any two rows of A

(c) A’ i*" row is obtained by replacing i*" row of A by i** row of A and ¢ x (j) row of A for i # j and

ce F.

Remark: If we can obtain A’ from A via elementary row operations, then we can obtain A from A’ from

elementary row operations.
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Definition 0.33: Row-Equivalent

We will write A — A’ if A’ can be ontained by an elementary row operations, we will say A, B €
My, (F) are row equivalent if there exists d > 0 and A = Ay, ..., Aq = B € M, o(F') such that

A=Ay—- - —A;=B

Proposition 0.9

Row equivalence is an equivalence relation on M,, ,,(F).

Proof: Definition check. O

Let A,B € My, »,(F), if A and B are row equivalent, then AT = 0 and BZ = 0 have the same set of
solutions.

Lecture 20 - Wed - Feb 28 - 2024

(I+c-Eij)A i#j
performs an elementary row operation to A, in which we take the i*" row of A and add ¢ - j** row of
A to it.

Remark: Notice that if i # j, then we have
(I+c Eij)I —c-Eyj) =1

Important to note that difference of squares does not generally hold for matrices.

ZErr+c'Eii A, C#O
r#i
performs an elementary row operation to A, in which we take the i*” row of A and scale it by ¢ # 0.

Z Err"f'Eij‘FEji A, C#O
r#i,j
performs an elementary row operation to A, in which we interchange row ¢ and j.
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Corollary 0.7

If A and B are row equivalent m x n matrices, then there exists U € GL,,,(F') such that B = UA.

Proof: Since B and A are row equivalent, there exist A = Ag, 41,...,Aq = B such that
A=Ay —> A1 —---—A;=B
Thus by Fact 1-3, for i = 0,1,...,d — 1, we have A;1 = U;A; for U; € GL,,,(F), so we have
B=A;=U3-1Uq---UpAy

Because for the fact that Ug_1,Uy, . ..,Uy € GL,,(F) which is a group, so we can take their product to be
U, which then yields us that B=UA. O

Proof: of theorem 0.5
By Corollary, B=UA for U € GL,,,(F'), so we have

Bi=0 & UA7=0 & U 'UAZ=U"'0 & AZ=0

thus completing the proof. O

Example 0.42

Find all solution to the system:

T, 4 223 +3x4 + 8x5 + x5 =0
2x1 4+ Dx3 + Txg + 325 =0
3r1 + 6x3 +8x4 + 5x5 =0

r1 +4xs3 + bxy + 8xs + 226 =0

Mo Re

%y 5%
(NVACERIDN XS B3 2L Y ) 2.

v N
N NSRRIy o & S N e Tt S
S\ : (82% e b P food 12
5 8 % E\ U e OOR T
\\‘\}\ \;\ 0000 ¢¢ | \oc co6 s )
\\3\‘ B : =
YRS

Bell cooking.
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Lecture 21 - Fri - Mar 1 - 2024

Definition 0.34: RREF
A matrix A is in row-reduced echelon form (RREF) if the following hold:

o the first nonzero entry in each nonzero row of A is equal to 1 (we call these the pivots of A and their
corresponding columns the pivot columns of A);

e each column containing the leading 1 of some non-zero row has all of its other entries equal to zero;
« all zero rows of A are below all nonzero rows;

o if r1,..., 7, are the nonzero rows of A and the leading nonzero 1 of 7; occurs in position k; (i.e., in
column k;) then k1 < ko < -+ < k.

We'll see that if A and B are in RREF and are row equivalent, then A = B. In other words, RREF

of a matrix is unique.
Theorem 0.26

Every m x n matrix A is equivalent to a matrix in RREF.

Proof: We do this by induction on the number of rows (m)

1. Base Case, m = 1:
Then either A is the zero row and we are done, or A is not zero, then there exists some 4 such that the
it" column of A is not zero and the column before that is 0, where we can simply scale the row by 1/c

and thus obtain the matrix in RREF.
2. Induction Hypothesis, let £ > 2 and the result holds whenever m < k:
3. Induction Step, consider the case when m = k:
Let ¢i,. .., ¢y, denote the columns of A and let ¢ be the smallest index for which ¢; # 0.

After performing a row swap, we can arrange it so that the first coordinate of ¢; # 0. After scaling the
first row, we can then assume that

Now by performing row operations, we can ensure that everything below the 1 in ¢; is 0. Then by
the induction hypothesis, we can use the elementary row operations to put the small section in the
southeast corner into a RREF.

Then we use those pivots to clear all the non-zero entry above them, so we are done.
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Solving Equations
AZ=}b
Input A which is m x n and b € F™, where z1,...,x, are unknowns, and we want to solve for Z.
Algorithm 0.1

1. Step 1:
Make an m X (n + 1) matrix (A | 5)

2. Step 2:
We use elementary row operations to put (A | 5) into RREF

3. Step 3:
Let (B | 5) denote the RREF matrix obtained in Step 2, solve BZ = ¢ directly gives us the

solution, which are precisely the solutions to A% = b.

We saw that if (A | E) and (B | 6’) are row equivalent m x (n + 1) matrices, then there exists

U € GL,,(F) such that
(Bl1e)=U-(A1D)

| | | | |
G|l=1U-a U-¢g --- U-g¢
| | | |

soU-(A|g)=(U A|U-b =B|)50B U-A,é=U-b. Sonow

Remark:

A}

—

Bi=¢ & UAZ=Ub & AZ=10 - U invertible
Remark: If (A | [_)') is in RREF, then A7 = b has no solution iff the last column is a pivot column.

Lecture 22 - Mon - Mar 4 - 2024

Example 0.43

Suppose we have V = R[z]<2 and B = {1 + z + 22,1 + 2z + 422, 1 + 3z + 92%}. How would you find
1+z]p?

Proof: We write
&1
[1+zlg=|c2 € R3
C3
This means that

1+z=c(1+2z+2?) 4+ co(l 4 22 + 422) + c3(1 + 32 + 927)

LY



Comparing the coefficients, we have

x0:1:01+02+03
x1:1:c1+262+363
220 =cy + 4des + 93

which corroesponds to

1 1 1\ | 1
1 2 3] |ec| =11 ~ RREF — solution
1 4 9 C3 0

Theorem 0.27

If (A | b) is in RREF, then AZ = b has a solution if and only if the last column of it is not a pivot

column.

Proof: 1. (=)

Last time we proved this using contrapositive.
2. (&)

Recall that if A and B are row equivalent, then

{#: Az =0} = {#: Bf =0}

Remark: In general, if j; < jo < -+ < j are the pivot columns and we let ug,...,uq denote the free

variables, then the equation B = 0 gives rise to k non-trivial linear equations for the form
Tj; + Aitur + Aigug + - + Njgug =0

fori=1,...,k, and )‘U eF.
In particular, we see how to give all solutions,

1. we can easily assign any value in out field to the free vars
2. the bound variables are uniquely determined by this assignment

We continue the proof:
If (A | b) is in RREF and the last column is not a pivot column, then AZ = b has a solution. We

have

I
(=1

bm Ln41

If the last column is not a pivot column, then z,1 is a free variable, so we can give it any value and there

will still be a solution.
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Example 0.44

C1
1 0 2 0
Co| =
0 1 3 0
C3

In general, we have

C1
Cc1 C1
C2
- N C2 - C2 -
Alb)| | =0 & A| | -b=0 & A| |=b
e : :
Cn Cn
-1

as desired. O
We now show that RREF of a matrix is unique.

Theorem 0.28

If B and C are m x n matrices in RREF that are row equivalent, then B = C.

Corollary 0.8

RREF of a m x n matrix A is unique.
Proof: If A — B and A — C, B,C in RREF, then because row equivalence is transitive, then B and C are
equivalent, so B =C. O

Proof: of Theorem
We proved this by induction on n = number of columns of B and C

1. Base Case: n=1
A m x 1 matrix in RREF is either

0

0 0
or

0 0

2. Now we assume the result holds whenever n < k

3. Consider the case when n =k +1

Lecture 23 - Wed - Mar 6 - 2024
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Recall AZ = 0, we can row reduce A to a B in RREF such that B has certain columns that are pivot
columns and certain columns that are not. The free variables are those indexed by the non-pivot columns

while bounded variables are indexed by pivot columns zjo, ...,z . Thus AZ = 0 is equivalent to the system

Tj1 = A11uq + - 4 Aqua

Tjo = Aoy + -+ Aogquq

Tjk = AUt + -+ - 4 Agatiy

Corollary 0.9

Nullity of A = number of free variables = number of non-pivot columns.

Proof: Let uy, ..., uq denote the free variables and x;1, . . ., 2, denote the Bounded variables. The nullspace
of Ais
{#: A7 =0}

and the nullity is the dimension of the nullspace. After relabelling,
{#: AZ =0} = {(u1, ..., ua,Tj1,-..,Tj%) : system above}
We create a map T : F? — nullspace(A) such that
T(cry .. yeq) = (€1, - e, A\1c1 + -+ AdCdy - -y Ag1er + -+ - + Agaca)
Notice T is linear, and the kernel of T is (0,...,0) because
T(ay,...,aq) = (0,...,0,0,...,0)
thus a3 = - -+ = ag = 0, which implies that T' is one-to-one. Notice T is also onto since every elemetn of the
nullspace is uniquely determined by an assignment of the free variable. Therefore, T' is an isomorphism, so

the nullspace of A =2 F¢, which then gives us that nullity of A is the same as the number of free variables.
O

Example 0.45

If Ais m x n with columns ¢y, ..., c,, thus
T

Al | =z + - +ap6,
Tn

If Ais m xn with



then

Tya: F" — F™
Ty(%) = A%
T
im(Ta)={A|:|:21,...,2p € F}
Ty,

={x1é61+ -+ xpCp :11,...,2, € F}
= span(cols of A)
= Col(4)

How do we find a basis for the column space of A? or the basis for im(74)

We put A to B in RREF. If ji,...,ji are the pivot columns, then the corresponding columns of A is
the basis of the column space of A .

Lemma 0.7

If B is in RREF, then the pivot columns of B form a basis for the column space of B

Proof: Let by,...,b; denote the pivot columns of B and let j; < jo < --- < ji denote the coordinate where
1 appears in b_i, R b. Then

bi =¢j,
b2 = 6;2
bk = 6;,9
Notice that {e1,...,en} is linearly independent, so that {ej,,... e, } C {e1,...,en} is also linearly inde-
pendent. Therefore, {b_i, ey b;} is also linearly independent.
Now to show that b_i, . ,b_;; span the column space, it suffices to show that if b is another column

of B, then b € {by,... by}
Now let b be a not pivot column of B, our claim is that if the i** coordinate of b is non-zero, then
i€ {j1,72, -5 Jr}-
Proof: of the claim:
If i*" coordinate is non-zero, then the i** row is also non-zero, so the first column with a non-zero entry in

the i" row is a pivot column, which implies that i € {j1, ja,...,jx}. O

Therefore,

s0 b € span{pivot cols of B} O
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Theorem 0.29

If A is row equivalent to B in RREF and B has pivot columns ji,...,ji, which implies that the
J1s---,jk columns of A form a basis for the column space of A and rank(A) = k = number of pivot
columns.

Proof: Write
| | . |
A=|ca & - ¢ B=|w u - 4

If A and B are row equivalent, then there exists an invertible n x n matrix U such that A = UB. If

U, ..., U, are the pivot columns of B. Notice
UB=U|u u, -+ upn

| | |
=|U-w U-uy - U-i,

Our claim is that the columns above form a basis for the column space of A:

This is because U is invertible so a unique linear combination is still unique. O

Corollary 0.10

If Ais m x n, then

n = number of columns
= number of pivot columns 4+ number of non-pivot columns

= rank + nullity

Lecture 24 - Fri - Mar 8 - 2024

For A € M,,(F), the following are equivalent:
1. A is invertible
2. Ty:F" — F™ Ts(&) = A- ¥ is bijective
3. Nullspace for A is (0)
4. Null(4) =0

5. rank(A) =n
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I 6. The columns of A form a basis for F™ |

Proof:

1.1 =2
If A is invertible, then there exists B such that BA = AB =1, so Ta(BZ) = A- (B%) = (AB) - & = 7,

so Ty is onto. By rank-nullity theorem, it is also one to one.

2.2—=3
ker(T) = {& : Az = 0}, but T4 is one to one, thus ker(T) = {0}, which implies that null space of A is
(0).

3354

Immediate

4. 4 —5
Follows from rank-nullity theorem

5.5—6
If rank = n, then column rank of A = n, then if v1, . .., v, are the columns of A, then span{vi,...,v,} =
F™. which implies that v1, ..., v, is a basis for F"™
6. 6 —>1
If the columns of A form a basis, then let v1,..., v, denote these columns, and since they are basis,
then for every j € {1,...,n}, we have e; = byjv1 + - -+ + bp;Uy, : b1j,...,bn; € F, so this means
b . 1\ [P
Al = & - o, :
bl NI VA

= bljvﬁ + -+ bnjU?L

I
wa_xl

Therefore, we know that there exists matrix B such that A- B =1

We formed a loop. O

We recall that for 2 x 2 matrices (a

b
d) , we had a very simple test for invertibility:
c

c

(a Z) is invertible < ad —bc# 0

We'd like to extend this for larger matrices.
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Determinants

For what follows,

A:

— 7, —

and we will sometimes write 4 = (r,...,75)
n-linear

Definition 0.35: n-linear

We say that a function
D:M,(F)—=F

is n-linear if, when we fix all rows other than the i** row and let the i** rows vary, we obtain a linear
function of the i*" row, for i =1,2,...,n

Exercise: Show that D : My(F') — F that sends aEq 1 + bEq 2 + cEas1 + dEs o to ad — be is 2-linear.
Example 0.46

If

Then D is 2-linear.

Example 0.47
Let

c b c
e f =a+te+1
h

1

= ael E

>
Q@ Q. 2
C

b
e
h

Q@ Q. 2

2

Then D is 3-linear, and E is not 3-linear. F is not linear because you would send 0 to non-zero element.

Definition 0.36: Alternating
Let D : M, (F) — F be n-linear, then we say D is alternating if the following hold:

If B is obtained from A by interchanging rows i,j,4 # j, then D(B) = —D(A) and
whenever A has two equal rows, D(A) = 0.
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Let F be a field of characteristic not equal to two. Then if D is n-linear then D(A) = —D(B) whenever
B is obtained by interchanging two rows of some matrix A if and only if D(C) = 0 whenever C has

two identical rows. Moreover, the converse holds without any restriction on the characteristic of the
field.

Proof: Suppose that D(A) = —D(B) whenever B is obtained by interchanging two rows of some matrix A.
Then if C has two identical rows, then if we switch these rows we see D(C') = —D(C) and so 2D(C) =0
which gives that D(C) = 0. Conversely, now assume that D(C) = 0 whenever C' has two identical rows and
let A be a matrix with rows r1,...,7,. Then create a new matrix A’ with rows s1,...,s, where s; = r; for
all i # j,k,j <k,and s; =r; + 7y, s, =rj +rp. Then D(A’) = 0 since A’ has two equal rows. But notice
since D is a linear function of the j** row, we see that

0=D(A")=D(s1,...,sn) = D(s1,...,8i-1,7j,Si41,---+5n) + D(SL, ..., 8i—1, Tk, Sit1s---,Sn)

Next we use linearity of the k' row to get that the RHS is the sum of four terms

D(s1,...,8i—1,Tk; Sit1,---,8k — 1,7, 8k11,...,8n),
D(S1y vy 8im1yThy Sitls -y Sk — 1,7,y Skt1y- -5 Sn),
D(s1,...,8i1-1,7j,8i41,--+,8k — 1,75, 8541, -+, Sn),
D(s1,...,8i-1,Tj,8i41,---, 8k — 1, 7%, Skq1, ..., 8n).

Notice the second and third of these terms is zero, since the matrices have two equal rows. Since the four
terms sum to zero, we see that D(A) = —D(B) where A is the matrix with rows rq,...,r, and B is obtained
by switching the j** and k*" rows of A. O

Remark: Notice that, however, if D(A) = —D(B) when we interchange two rows of A to obtain B and D
is n-linear, this does not imply D(C) = 0 whenever C has two equal rows. What if we are working in field

with characteristic 27

Lemma 0.8

If A — B through RREF, then D(A) = D(B) if it is R; = R; + c¢R;; D(A) = —D(B) if it is
R, — Rj & Rj — Ri; and D(B) = CD(A) if it is R, = CRZ‘,C 7& 0.

Proof: If we scale the i*" row of A by a nonzero scalar ¢, then D(A’) = ¢D(A) since D is linear as a function of
the i row; if A’ is obtained by interchanging two rows of A then D(A’) = —D(A). Finally, we can check if A
has rows r1,. .., 7, and we replace row i by r; +cr; then by n-linearity D(r1,..., 71,7 4+crj, Tig1,...,Tn) =
D(A). Tt follows that if A and A’ are row equivalent then D(A) = aD(A’) with « a nonzero element of F.
a

Now consider an n-linear alternating function

D:M,(F)—=F
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Our claim is that if D(I) # 0, then D(A) =0 < A is not invertible.

Proof: We row reduce A to a matrix B in RREF. By the above, D(A) # 0 < D(B) # 0. If B is the
identity matrix then A is invertible since it has full rank and since D(I) # 0 we see that D(A) # 0. If B is
not the identity matrix, then we do not have a pivot in every column and since the number of rows is equal
to the number of columns, we must have a zero row. Thus D(B) = 0 and since A is row equivalent to B we
see that D(A) =0. O

Lecture 25 - Mon - Mar 11 - 2024

Definition 0.37: Determinant

We say a map

is a determinant function if
1. It is n-linear
2. It is alternating
3. DI)=1

Remark: We will see that for all n > 1, there exists a unique function, which we will call the
determinant.

Example 0.48

For n =1, we would have D((a)) = a, which is indeed n-linear, alternating, and D((1)) = 1.

Example 0.49

For n = 2, we would have

of(: )

is 2-linear, alternating, and D((I)) = 1.
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We will now show that the determinant function exist for every n by induction on n.

Proof:
1. Base cass, n =1,2:
2. Suppose that d > 3, there exists a determinant function whenever n < d.

3. We will show that there exists a determinant function

D:Md(F)*)F

Definition 0.38: A(i | j)

Given an m x m matrix A, we let A (i | j) denote the (m — 1) x (m — 1) matrix obtained by deleting

the i*" row and the j** column.

Proposition 0.10

Let det : M;_1(F) — F be a determinant function. For j = 1,2,...,d we define

E;: M(F)—F
d . .
Ej(A) = ay(—1)"* det(A (i | )
i=1
then each Ej is a determinant function; i.e. they are n-linear, alternating and E;(I) = 1.

Proof: We first compute F;(I,). Since in this case the (i, j)-entry of I is zero unless j =i and is 1 if i = 7,
we see that E;(A) = (—=1)*D(I(j | j)) = D(I,,—1) = 1.

We now show Ej is alternating. Notice that it suffices to show that D(A) = 0 whenever A has two identical
rows and it suffices to consider the case when the two rows are adjacent, so suppose that the p" and
(p+ 1)*" row of A are the same. Then A(i|j) has two identical rows if i ¢ {p,p + 1} and so D(A(i|j)) =0
for all i except when i € {p,p+ 1}, and so E;(A) = a; j(—1)" " D(A(i|§)) + ai+1,;(—1)" T D(A(i + 1]5)).
One can now easily check these two terms cancel. Now let us consider the case where A has rows ry for
k # i and row i is 7; + ¢s;. We must show that E;(A) = E;(A41) + cE;(A2), where Ay is the matrix in
which the k" row is rj for all k, and Ay is the matrix in which the k** row is 7, if k¥ # i and the ‘"
row is s;. Then by (n — 1)-linearity of D, we see that D(A(p|j)) = D(A1(plj)) + cD(A2(plj)) if p # i and
D(A(i|7)) = D(A1(i|7)) = D(Ax(i|5)) since all rows other than the i** are the same in A, A;, and Ay. So
from these fact is follows that E;(A) — E;j(A;1) — cE;(As) = (A(i,5) — A1(i,j) — cAs(i, §))(—1)"I D(A(i]j)).
Notice A(i,j) — A1(4,5) — cAa(i, ) = 0 so we obtain linearity in each row, so Ej; is a determinant function.
o O
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Lecture 26 - Wed - Mar 13 - 2024

We were tying to show that determinant functions exists and they are unique.
Recall that to check an n-linear map is alternating, it suffices to check that D(C) = 0 whenever C

has two consecutive equal rows, and we were showing that the determinant functions exist by induction on

n.

We now show that there exist exactly one determinant function.

Proof: For the proof, let e; denote a row of n zeros with 4t spot being 1. Let
aix a2 - Qlp

A= ﬁ:(azla,aln)
ap1 QAp2 - Gpn

Therefore we can write the first row of A as aj1€1 + -+ + a1p6,. If we fix all other rows and look at D as a

linear function of the first row, then

— 6 — — e, —
D(A) :anD - - ++an1D _ -
— Ty — — Ty —
. (5
= ZaljD J— J—
=1 e
n

— q —
n n - 63 I
D(A) =" > aijas,D .
j1=152=1 -t
—
Continuiting in this manner, we see that
— o —
n n o 63 o
D(A): E E aljl"'anjn'D )
=1 jn=1 - =
— e —
L scalar .

68



Example 0.50

For 2 x 2, and D is 2-linear with D(I) = 1, then

ai; a2 0 1 0 0 1 1
D =ana + aji1a22D + ajzao1 D + ajza
<a21 a22> 11021 1 0 11022 (0 1) 12021 (1 O) 12022 0 1

1 0 1 0
= aj1a22D — aisao1 D
11022 (0 1) 12021 <0 1

= 11022 — G12G21

Suppose that D is n-linear and alternating, D : M, (F) — F, thus

— & —
n n n 65 S

DA => > |[]a-D
J1=1  jn=1 [i=1 -
— 6, —

Notice if there exist p # ¢ such that j, = j, implies that e, = ej, , which impies that D(matriz) = 0.
Thus we may assume that ji,...,j, are pairwise distinct. Since they all take values in {1,2,...,n} we see
that {1,2,...,n} must be a rearrangement of 1,2,...,n. That is, there must be a one-to-one and onto map
o:{1,...,n} = {1,...,n} such that j; = o(3) for i = 1,2,...,n. We recall that the set of bijective set maps
is called the set of permutations of {1,2,...,n} and it forms a group under composition; this group is called
the n-th symmetric group and we let S,, denote this group:

Sp={0:{1,2,...,n} - {1,2,...,n}}

Then we can rewrite the sum as

€1 —
n n ey —
D(A) = Z Haw(i) -D ’
oceS, i=1 -
€ —

For o € S, we define sgn(o) := D(matriz). We call this quantity the sign of the permutation o. We will
show that this sign is always 1 or —1. O
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Lecture 27 - Fri - Mar 15 - 2024

Lemma 0.9

- —
Let 0 € S, then we can perform a series of row interchanges to transform | __| to the
go’(n) 7
— &y —
identity matrix. If d,e € N and we can row reduce | __ : _ | — I using d row interchanges
— Cn) —
and using e interchanges, then d = e (mod 2).
Proof:
Proof: of first statement:
We induct on n, notice that it is true for n = 1.
Induction Hypothesis: Assume true for n < d, d > 2.
Consider the case when n =d :
. — e — — & 0
— )y —
. : o~ =1 0
o B — Era-1) — — €@ O
o(d) 0 -1 0 1

o(1),...,0(d) is the rearrangements of 1,...,d, so there exists ¢ such that o(i) = d. If i = d, we do nothing,

otherwise, we interchange rows ¢ and d as shown above. Notice that 7(1),...,7(d — 1) is a permutation of
1,2,...,d — 1. By induction hypothesis, we can perform row interchanges that turn
€r(1)
. — Id—l
—  €r(d-1)

and if we do these interchanges on

— & —

—)Id
— €r-1) —

as desired. O

Proof: of statement 2:
For this, we let D be a determinant function D : M, (C) — C. Consider a matrix

— &y —

€o(n) —
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Suppose that we have two ways of transforming A to the identity cia row interchanges:

A=Al > Ay — - > Ag 1 — 1

A A=A A>T

If we go by the top path, D(A) = (—1)¢, and if we go by the bottom path, we have D(A) = (—1)¢, thus we

can conclude that d and e have the same parity. O O

We define for o € S,
sgn(0) = (~1)°

— &ay —

where we can row reduce | __ __ | — I with d row interchanges. This is well-defined because if

50(70
we can row reduce with d; row interchanges and ds interchanges, then d; = da (mod 2) and thus (—1)% =
(~1)%.

Corollary 0.11
If D: M,(F) — F is a determinant function, then we have

ain o Qip "
Dl : = Z ( ai,a(i)) sgn(o)
1

oeS, \i=
ap1  *°* Qnn
Theorem 0.30
For A, B € M,,(F'), we have
det(AB) = det(A) det(B)
Proof: Notice if det(C) = 0 if and only if C' is not invertible. Hence AB is not invertivle if and only if A is

not invertible or B is not invertible. Thus we have

0=det(AB) <= det(4)=0 ordet(B) =0
<= det(A)det(B) =0

So STP the case when det(A) # 0 and det(B) # 0. i.e., A and B are both invertible.

det(AB
Define a map D : M, (F) — F via the rule D(A) = (;‘E(B)). CLAIM: D is n-linear, alternating,
and D(I) is equal to 1. Notice D(I) = 1. We then show it is n-linear, we first write
g — 75.B —
7ﬂ77, — — 7ﬂ77, : B —
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So to show D is n-linear, we fix all rows but i*" and let it vary. Thus we know that it is n-linear because both

matrix multiplication and determinant function are linear. Alternating is easy to see because two same rows

multiply by B are still the same, and because determinant function is alternating, thus D is also alternating.
O

This gives us a nice result:

If 0,7 € Sy, then sgn(o o 7) = sgn(o) sgn(7).

Proof: Def check. O

Lecture 28 - Mon - Mar 18 - 2024

Recall from last lecture, we have

det(4) = Y [sgn(o)-Hai,m]
i=1

O'GSn

Sp is a group under o (\circ ), and {£1} is a group under - ( \cdot ). Moreover,

sgn : S, — {£1}
sgn(o o) = sgn(o)sgn(r) Vo,rmeb8,

sgn is a group homomorphism. And
A, =ker(sgn) = {0 : sgn(c) = 1} = kernel of sgn

notice that A, is the alternating group, a subgroup of S,,. It is also closed under o, taking inverses, it
has the identity:

sgn(o) =sgn(r) = sgn(oo7)=sgn(o)sgn(r) =1
sgn(oc)=1 = sgn(c ') =1

Let A € M, (F), then det(A”) = det(A).

Proof: We have

det(4) = " segn(o) [ aioe
=1

gESy
n
det(AT) = Y " sgn(o) [ [ aoq.
oceS, i=1
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Notice that o(1),...,0(n) is a permutation of 1,...,n, so the following follows the definition. Basically, we

can just rearrange them, in other words, take their inverses:

n

det(AT) = Z sgn(o_l) H ajo-1(5)

o€eSy, =1
gg U

Recall we showed that .
Ej(A) = ai;(—1)"" det(A(i | 5))
i=1

is a determinant function. Since determinant function is unique, we have

Definition 0.39: Cofactor Expansion Along j** Column

det(A) = Zaij(_l)H_j det(A(i | 7))

Example 0.51

Use cofactor expansion to find

2 6 18 = 006
det |0 5 906 | =2(—1)"""det (0 3):30
00 3

The Classical Adjoint
Theorem 0.32

If A, n xn, and det(A) # 0, then

A7 = o (1 den(ag 1)

1<ij<n

Theorem 0.33

If dimV =n, and T : V — V is defined as det(T) := det([T]g) where B is an ordered basis, then
[T)e = S7YT)5S, and we have

det([Tc) = det([T]5)

Lecture 29 - Wed - Mar 20 - 2024
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Eigenvalues and Eigenvectors

Consider

3 and 0 to 0 , and we know that T' o
0 1 2 7

Definition 0.40: Eigenvalue & Eigenvector

1
The linear transformation sends [O] to

Let T : V — V be a linear operator. We say that the scalar ¢ € F' is an eigenvalue of T if there exists
0 # v € V such that T'(v) = cv, and we call v the eigenvector of T

Example 0.52

1
Consider the example above, we notice that [O] is an eigenvector of T' since we have T’ (

where 3 would be the eigenvalue.

Remark: If ¢ is an eigenvector of T' with corresponding eigenvalue ¢, so is A-v for A#£ 0, A € F.
TA-v)=X-Tlw)=A-c-v=c-(A-v)

Remark: For A € M, (F), c € F is an eigenvalue of A if there exists ¥ # 0 such that A7 = ¢ 7.

Exercise: V = R[z], we define two linear operator:

TVSV T(p) :/Omp(t) dt

d
S: V=V S(p(x)) = d—p(x)
x
What are the eigenvalues / eigenvectors of T and S?
Proof: T does not have eigenvector. If there exists 0 # p(z) € R[z] such that

T(p(x)) = c-p(x), ceR

which implies that -
[ oy dt=cpio)
0

which then implies that p(z) = ¢ p/(z), which clearly has no solution with 0 # p(x) € R[], ¢ € R because
degree of p’(x) is always less than degree of p(x) for p(x) # 0.

How about S? If 0 # p(x) is an eigenvector, we need S(p(x)) = c- p(z) for some c € R =
p'(z) = ¢-p(x). Case 1: ¢ # 0, so we have no solution, because deg(p(x)) > deg(p’(x)). Case 2: ¢ = 0,
p'(z) = 0, so we can conclude that p(z) is a constant. Thus eigenvalue is 0, and eigenvector is nonzero

constant polynomials. O
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Example 0.53

Show that A = (
-1 0

0 1
) € M>(R) has no real eigenvalue.

a

0
Proof: Suppose we have a solution, so we have ¢ € R and [Z] # [O] such that A , which

la
= C -
b

, since a, b not both zero, which implies that ¢ # 0,a # 0,b # 0. Now, we

b
would then give us [ ] = lca
—a cb

1
have —1 = 2. If we work over C, then i is the eigenvalue, and the eigenvector would be [] O
i

Example 0.54

Let A =1, € M,(F), then the eigenvalue is simply 1, and everything is its eigenvector.

Definition 0.41: Eigenspace

Let T': V — V be an operator (includes A € M,,(F)). Thenifc € F, welet W. = {0 €V : T(¥) = ¢-U},
which is called the eigenspace of T associated to c.

Theorem 0.34

For all c € F', W, is a subspace of V.

Proof: If suffices to show that 0 € W, and W, is closed under addition and scalar Multiplication.
T(0)=0=c-0 = 0eW.
and more definition check. O
Remark: ¢ is an eigenvalue of T if and only if W, # (0) if and only if dim(W,) > 1.
Theorem 0.35

Let T : V — V be an linear operator for dim(V) < oo, and let ¢ € F, then TFAE:
(1) cis an eigenvalue of T'

(2) W # (0)

(3) T — cI is not invertible.

(4) det(T —¢cI)=0
Proof: Wesaw 1 & 2
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2 = 3. If W, # (0), then there exists 0 # v such that T'(v) = cv, which is equivalent to (T — ¢I)(v) = 0,
which means that ker(T — cI) # (6), which implies that T' — ¢l is not 1-1, hence not invertible.

3 — 4, T — cI not invertible = det(T — ¢I) = 0.

4 = 1, det(T — cI) = 0, implies that ker(T — cI) # (0), so there exists 0 # @ such that (T — eI)(v) = 0,
thus T'(v) = c-v. O

Characteristic Polynomial
Definition 0.42
In general, if we let z be an indeterminate, then zI — A € M, (F[z]). We will see that det(zI — A) is

a monic degree n polynomial in F[x] whose roots are the eigenvalues of A.

Lecture 30 - Fri - Mar 22 - 2024

Let x be a variable, let pa(z) = det(aI — A), where 2l — A € M,,(F[z]), then cisaroot of ps(z) < ¢

is an eigenvalue.

bir bz - bin
Proof: Let B =2l — A and we write b= | - .. ¢ | Therefore, we have b;; = 2d;; — a;; where
bnl bn2 T bnn
1 ifi=j .
0ij = , following that, we have
0 ifi£j

det(zI — A) = det(B) = Z sgn(0)b1o(1) * * * bro(n)

g€eSy
= Z Sgn(g)(mélo‘(l) - ala(l)) e (xéna'(n) - ana‘(n))

g€eSy
= Z (sgn(a)z”élg(l) “+Opg(n) + lower degree terms) € Flx]

o€ESy

011 d12 o+ Oin
Notice that the coefficient for ™ in p4(x) is Z sgn(0)016(1) "+ Ono(n) = det [ Lo =1
ocEeS, (5 1 6 5 L. 6

Therefore, pa(z) is a monic polynomial of z with degree n, and thus

cis aroot for pa(z) < det(cI —A) =0 <& cis an eigenvalue of A
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Example 0.55

0 2 0
Find pa(z) when A= 13 1 -1
3 7 -1

We have

pa(z) = det(xl — A)

-1 1 - 1
=zdet | — (—2) det 5
-7 x+1 -3 z+1

=z((z—1)(z+1)+ 7 +2[-3(x+ 1)+ 3]

1,3

which means that the only eigenvalue is 0, and to find the corresponding eigenvectors, we solve for
(A—ol)Z=0.

02 0 02 010
31 -1|#=0 ~ [3 1 —-1]0
3 -1 3 7 —-1/0
10 —-%]0
01 010
00 010

1’3/3
where we can find that the eigenvector is | 0 | for z3 # 0.

T3

Theorem 0.36

If A and B are similar, (i.e., there exists S € GL,(F) such that B = STt AS) then pa(x) = pp(z). In
particular, they have the same eigenvalues.

Proof: We have B is S~1AS for some S € GL,(F), thus

pp(z) = det(xl — B)

= det(xI — STTAS)
=det(S7H(zI — A)S)
= det(S™1) det(x] — A) det(S)
= det(z] — A) = pa(z)
gg U

Remark: So they have the same eigenvalues.
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If A is upper triangular, then pa(z) = (v — a11)(xz — az2) - - (£ — apy), which implies that a;; are the

eigenvalues.

Definition 0.43: Multiplicity

If ¢ is an eigenvalue of A, then p4(x) = (z — ¢)"q(x) for q(c) # 0. We call n the multiplicity of the
eigenvalue c.

n is not the dimension of the eigenspace in general, but we so have dim W, < n.

0 0 O 0 —co
1 0 O 0 —

Ifp(x) =a"+cp 12" ' +---cix+co,welet C =0 1 0 - 0 —ca2 is called the companion
0 0 O 1 —c,

matrix of p(z)

pe(z) = 2" + cp12" "t + -1 + ¢ € Flz], we prove this by induction on n. We assume true for
n < d, d > 2. Consider the case when n = d, so

0 0 0 0 —c¢p T 0O 0 -+ 0 ¢
1 0 O 0 — -1 x 0 --- 0
c=10 10 0 —co — Il —C = 0 -1 =z -+ 0 c2
0 0 O 1 —c, 0 0 0 -1 ¢,
Lecture 31 - Mon - Mar 25 - 2024
Quotients

Let V be a vector space over the field F' and let W and W’ be subspaces of V. We say that the sum of
W and W’ is the subspace of V' given by {w + v’ : w € W,w' € W’'}. We say that this sum is direct if
W N W’ = {0}. Notice that if the sum is direct that if v € W + W' then there is unique way to write it in

the form w + w’ with w € W and w’ € W', since if we have two decompositions

!/ /
V= w4 wyp = wa + Wy
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then subtracting yields w; — wy = wh — w} and so w1 —we € WN W' = {0}. Thus w; = we and w} = wh.
When a sum is direct, we write W & W’ to denote the sum W + W’. We say that a subspace W’ of V is
complementary to W if V' = W 4+ W' and this sum is direct; that is, V. = W @ W’. Notice that if W is a
subspace of V' then a complementary subspace exists: take a basis B for W; extend it to a basis C for V;
now let W’ denote the span of C\B; then one can check W + W’ is direct and equal to V. Now let W be a
subspace of a vector space V. Just as we formed Z/nZ in MATH 145 using an equivalence relation, we can
similarly define a quotient space V. /W by putting an equivalence relation on V as follows. We write v ~y v’
if v — v’ € W. Notice that ~y is an equivalence relation: it’s transitive since 0 € W; it’s symmetric, since
if w e W then —w € W; finally, if v ~w v’ and v/ ~y v then v —v' and v — v” are in W so their sum,
v —v", is in W, which gives v ~y v”. Notice that if v € V then every element of V' that is equivalent to v
with respect to ~yy is of the form v + w for some w € W and all elements of this form are equivalent to v.
For this reason, we write v + W to denote the equivalence class of a vector v € V and we call an equivalence
class a coset of W. We should think of a coset of W as translating the subspace W by a vector in V.. We let
V/W denote the set of cosets of W.

Example 0.56

Let V = R? and let W denote the span of (1, 1), which is the “diagonal” line through the origin. Then
the cosets of W (i.e., the equivalence classes) are the sets {(z,x + ¢) : © € R} with ¢ € R.

Proof: Every coset is a set of the form (a,b) + W. Notice that W = {(z,z) : * € R} so the coset
(a,0) + W ={(a+z,b+2z):2 € R} ={(y,c+y):y € R}, where c=b—a. O
Proposition 0.11

Let W be a subspace of V. Then V/W is a vector space with addition given by (v + W)+ (v +W) =
v1 + v2 + W and scalar multiplication ¢ - (v + W) = cv + W.

Theorem 0.39: Universal Property

Let V be a vector space and let W be a subspace of V and let 7 : V' — V/W be the quotient map. If
T :V — U is a linear map to another vector space U and W C ker(T) then there is a unique linear
map T : V/W — U such that the following diagram commutes:

V—U

| A~

V/wW

where the top arrow is the map 7', the downward arrow is the quotient map 7w and the diagonal map

is T. In other words, there is a unique linear map 7" such that 7= T o .

Theorem 0.40

Let W be a subspace of V' and let W’ be a complementary subspace to W. Then W' = V/W.
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Corollary 0.12

If V is n-dimensional and W is a d-dimensional subspace, then V/W has dimension n — d.

Lecture 32 - Wed - Mar 27 - 2024

Compute pa(z) = det(zI — A) and find its roots. For each eigenvalue ¢, we compute the nullspace

of A — ¢l whose nonzero elements are eigenvectors for eigenvalue c.
Definition 0.44: Diagonalization

Let A € M, (F), we say that A is diagonalizable if there exists S € GL,,(F') and a diagonal matrix D
such that D = S™1AS (i.e., A is similar to a diagonal matrix).

Note that ¢ : M, (F) — M,, $(X) = S~1XS is an isomorphism.
Theorem 0.41

If A € M,(F) has the property that F™ has a basis 1, ..., v, consisting of eigenvalues of A, then A is

diagonalizable and if Av; = ¢;v;, then

C1 0
C2
=571AS
0 Cn
. |
where S = v vy -+ U,
| |
| |
Proof: Let S=|v; vy --- v, |, then S is invertible because Colrank of S = n, which implies that the
| |
determinant of S is non-zero. Consider
| | | | | | | |
A-S=A-|vi vy - vp|=1Avy Avy --- Av, | =|civ1 cv3 -+ e U
| | | | | | | |
| | | | | |
so we have ST1(AS) = S~ | c10] vn -+ cptn | = | eS0T eST'vs oo+ ¢,S7'v;, | Notice that
| | | | | |
| | | |
the identity is simply | &7 € --- €, | =1 =5"1S. Hence we know that ST'AS = [ ¢; ¢ -+ ¢, |,
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0 C2 0
which is the diagonal matrix ) m|

o o . 0

0 O Cn,

Example 0.57

1 1
Let A= ( 6 6) , find a diagonal matrix D and a matrix invertible matrix S such that S~'AS = D.

1. Step 1:
Compute the characteristic polynomial we have

pa(z) = det(xl — A) = det (x -1 -1 )

6 z—06
— (z—3)(z—4)
Hence 3 and 4 are our eigenvalues
2. Step 2: Find corresponding eigenvectors
When ¢ = 3, we have A—31 = :z ;) ~ (é _0%> , which implies that B] is an eigenvector.

1
Similarly, when ¢ = 4, we have A—41 = ( , which implies that 3 is another eigenvector.

-3 1
-6 2
. 9 1 1
Therefore, they are the basis for F#, S = 5 3
3. Step 3: Find the inverse for S

-1
We can find that S~ = 32 ) )

4. Calculate
Therefore

01
Consider the matrix A = (0 0) because the only eigenvalues are 0.

Example 0.58

Find A0,
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Proof: Since we have A = S (g Z) S~1 = 8DS™!, therefore

A= (SDS™H(SDS™!)---(SDS™) (1)
100
= SD's5™1 (2)

3100 0 =
:S<0 4m>s 3)

Theorem 0.42

In fact, An n x n matrix A is diagonalizable over F' if and only if there is a basis for F" consisting of

eigenvectors of A.

Proof: Backward is trivial, conversely, if A is diagonalizable, then there exist ¢j,...,¢, and S € GL,(F)
such that
C1 0 0
0 Co
) =S5"tAS
0O 0 - 0
0 O Cn,
C1 0 0 C1 0 0
0 e 0 ] | 0 e 0 ]
so S ) =AS. IfS=1|v; vy --- 4, |,thenS ) =Alv v
0o 0o . 0 | | | 0o 0o . 0 | |
0 0 Cp, 0 0 Cn
| | | | | | | |
then | Scie; Scaees --- Scpe, |, then | cjv1 cv5 -+ cpuy | = | Avy Avy --- Awv,, |. So the

vectors are eigenvectors of A and they form a basis because S is invertible. O

Theorem 0.43

Let A € M, (F) and suppose that p4(z) has n distinct roots in F. Then A is diagonalizable.

Proof: Let ci,...,c, be the distinct roots of the characteristic polynomial of A and let vy,...,v, be
corresponding eigenvectors. We claim that vq,...,v, forms a basis for F™. To see this, it suffices to show
that the vectors are linearly independent. So SFAC that {v1,...,v,} is dependent. Then there is a minimal
dependent subset: {v;,,...,v; }. Notice & > 2 since the vectors are nonzero. So we have a non-trivial

dependence
k
Z )\jvij =0
j=1

Left multiplying by A gives us another relation
k
Z )\j Cij Uij =0
j=1
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Then multiplying our first relation by ¢;, and subtracting our second relation we get

k—1

Z )\j(cik — Cij)vij =0

j=1
By minimality of our dependent subset that A;(c;, —c¢;;) =0for j =1,...,k—1;since ci,. .., ¢, are distinct,
we then see \; = -+ = A\;_1 = 0, so our original relation becomes A;v;, = 0 so Ay = 0 too, contradicting

the fact that our dependence was non-trivial. O
Lecture 33 - Mon - Apr 1 - 2024

Definition 0.45: Linear Recurrence

A sequence fy, f1, fo,... taking values in a field F satisfies a linear recurrence is there exists d > 1

and constants cg, c1,...,cq € F such that

fn:clfnfl+02fn72+"'+cdfn7d VnZd

Example 0.59

Fibonacci sequence is a classical example, so does f, = 2" and ¢, = n?.

Solving Linear Recurrences with Linear Algebra

Suppose we have a function f(n) for n =0,1,2,... and a d > 1 such that f(0), f(1),..., f(d — 1) are our
initial values, and we have f(n) =c1f(n—1) 4+ caf(n —2)+ -+ cqaf (n — d). We wonder how we can solve

this using linear algebra, consider

£(0)
f()
Fi s = )
fd—1)
Let A =€ My(F) be
0 0 0 0
0 0 1 0 0
0 0 0 1 0
A =

0 0 0 0 1
Cd Cd—1 Ci—2 Ca— -+ €1

Let v, = A" for all n > 0,
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Theorem 0.44

We will have
f(n)
fln+1)

Uy, = ) Vn>0

f(n fd- 1)

Proof: The proof involves induction, which is a lot typing, just check definitions. O

Now, consider

[1 0 O}(A”w_é):[l 0 O} Uy,
d
f(n)
:{1 0o --- 0} f(n:—|—1) = f(n)
fn+d—1)

Suppose that A is diagonalizable and D = s~ AS, then A™ = S~ D"S. Therefore,
f(n) = [1 0 ... 0} Ao
- ([1 0 .- 0} S) D™(S~ 1)

Example 0.60

Consider Fp =0,F; =1,and F,, = F,,_1 + F,_o.

0
and A = 01 , thus A™ - vy =
1 11 Fra

first find the characteristic polynomial, which simply is 22 —x — 1, which has distinct roots: (14+/5)/2

n

Therefore, vy = . Diagonalizes A. Step 1, we need to

b
and (1 —+/5)/2. Step 2, Then we want to find the eigenvectors: If \ is ab eigenvalue, of (a d)’ then

c
a— A b 0
c d—X|0

b
so if (a — A\, b) # (0,0). then \ ] is an eigenvector. The matrix S has columns uy, us where uy, us

we need to solve

are eigenvectors for these eigenvalues. We compute and find

1 1
S = (1+¢5 1—\/5>
2 2
. 1+2\/5 0
= STAS = 0 1B
2
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Hence solving for A we have

145 15 )"
A:S( 2 0 )s—l;» AM=S ( ? )

0 1=

Therefore,

Fn:[l o]A” 0

] (= | (1_35),1 lr]
A0 ()

Remark: Notice that F), is the closest integer to \/Lg - p", where p is the golden ratio.

Not all matrices are diagonalizable, if, however, we work over C, then all matrices are triangularizable:
(i.e., there exists S € GL,(C) and an upper-triangular matrix U such that U = S~1AS).

Let F be a field, and let A € M, (F)(C M, (K)), then there exists a finite extension K of F' and there
exists S € GL,,(K) such that

S7YAS  is upper-triangular

Proof:

Lecture 34 - Wed - Apr 3 - 2024

Review for Math 145

If p(z) € Flz] (e.g. %>+ 1 € R[z]), there exists a field extension K of F (i.e. F C K) such that

p(x) factors into linear factors:

p(x) =Clx — A1)+ (& — Ag) Aoy Mg EK
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Definition 0.46

f K is an extension of F, K is an F-vector space. So K has a dimension. If dimpK < oo, we say that
K is a finite extension of F.

Corollary 0.13
If A e M, (F), then there exists a finite extension K of F' such that A has an eigenvalue as a matrix

in M, (K).

Proof: Let pa(z) € F[z] be the characteristic polynomial of A, then there exists a finite extension K of F’
such that
pa(x)=(x—A1) - (z—Ag) AM,..., g EK

so A has eigenvalues as a matrix in M, (K). (In fact n eigenvalues when we count by multiplicity). O
Recall that not all matrices are diagonalizable,

Example 0.61

For instance, A = 01
0 0

Definition 0.47

A matrix A € M, (F) is triangularizable over F if there exists S € GL,(F) such that S71AS is

upper-triangular.

Theorem 0.47

Let A € M,(F), then there exists a finite extension K of F such that A € M,(F) C M,(K) is
triangularizable over K and if F = C, we can take K = C.

Proof: Induction over n:

1. Base case: n =1

Trivial case
2. Assume true
3. We know there exists a finite extension K of F' such that
pa(@)=(x—A1) - (z—Ng) MM, ..., g €K
and when F' = C, we can take K = C. Now there exists an eigenvalue v; € K¢ such that

- -
Av1 = )\11)1
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We can extend v; to an ordered basis vi,...,vg for K¢ Let S = [v; o - wug| € GLg(K).

Notice that

Alvr v vg | = | Avi  Avs Avg | = | Mv1 Avd Avy
| | | | | | | |
SO
| | | | | |
STIAS =S | Nwop Aoy - Aug | = | STIhe ST AG oo STMAwg
| | | | | |
| |
Recal I=|¢é ¢ - é3| =818, hence
| |
Al e Cd—1
0
S71As=10 A e Mg 1(K),e1...,cq€ K
0 A’

By induction hypothesis, we know that there exists T € GL4_;(K) such that T~ A'T is upper-triangular,

thus we consider

1 0 0 1 0 0 1 0 0 A Ca Cd—1 1 0 0
0 0 0 0
(S*lAS) -
0 71 0 T 0 7/ [ \o A ) \o T
0 0 Ak %
0 0
0 71 0 A'T
A1k *
0
0 T-A'T
Al * e *
0
0 U

87



0
so if welet Ty = | | , then Tl_ls’_lASTl is upper-Triangular. O

0 T
For simplicity, we will work in M,,(C), so
pa(z) = (x = A1) (z = An)
"M *

V2
and there exists S € GL,(C) such that S71AS = ) . Because ST1AS is similar to A4,

0 Tn
Ps-145(7) =pa(z) = (2 — A1) (. — Ay)

so det(x] — S™YAS) = (x — 1) -+ (¥ — 7y), which implies that ~;’s are rearrangements of \;’s.

Recall the following facts:
1. Similar matrices have the same trace
2. Similar matrices have the same determinant

Sotr(A) =tr(S7IAS) =y +y2 4+ Fm=A1 + A2+ -+ Ay, and
det(A) = det(S_lAS) =Y1Y2 Y = )\1)\2 . )\n

Definition 0.48: Vandermonde Matrices

For A\i,..., )\, € F, we define the matrix

IR VEEERRID U

1 Ay - AE
Vn(Alv"wAn): . : .

1 A An-l

to be called the Vandermonde matrices.
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Lecture 35 - Fri - Apr 5 - 2024

Recall the Vandermonde Matrix.
Theorem 0.48

‘We have
det(Va(Ar, - An)) = [T = M)

j>i
In particular, if A, ..., A, are distinct, then V,, (A1, ..., \,) is invertible. We prove that if Py, P,..., P,
are polynomials with P; monic and degree i, then the determinant still holds for the matrix defined as

Po(A) Pi(A) - Paea(M)
Po(A2) Pi(A2) o Puoi(Ne)
PO()\n) Pl()‘n) Pnfl()‘n)

Lemma 0.10

Let p(z) € F[z] be monic of degree n and let ¢ € F, then there exists a monic polynomial ¢(x) of
degree n — 1 such that

Proof: we know that

- =(x—c) (T 2 e+ 4 T
so we have
n—1 n—1
p(z) —p(c) = Zajxj +a" | — Zajcj +c"
3=0 §=0
n—1
— @ =+ Y gl — o)
j=0
n—1
= (33 — C) 1 + " 2¢ 4.+ 1 + Z aj(wj—l + =2 4+t cj—l)
3=0

and ¢(x) is monic of degree n — 1. O

Proof: of the theorem:

We prove the theorem by induction on n.

det (1 A +“> = (o — A1)

Base case, n = 2: we simply have

1 )\2+a

Suppose the statement is true for n = d where d > 2.
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Consider the case when n = d + 1:

1 P(M) o+ Paoi(M)
1 Pi(M) Po_1(X
A=, (. :
1 Pi(A) -+ Pooi(An)
Perform row operations, R; — R; — Ry fori =2,...,d+ 1, we get A becomes
1 Pl()\l) Pnfl()\l)
0 Pi(A2) = Pi(A) -+ Paoi(A2) = Pooa(M1)
0 Pi(An)—Pi(M) -0 Pooa(An) = Paoi(M1)

Let ¢ = Ay, by our lemma, for all ¢ > 1, there exists a polynomial Q;_1(x) of degree i — 1 such that
Pi(x) = Pi(c) = (z — ¢)Qi-1(x)
We know that

Pi(Aj) — Pi(Ni) = Bi(Aj) — Pi(c)
= (A = )Qi-1(¥)) plug in z = A;

Hence we can rewrite our matrix as

1 P1(>\1) Pn—1(>\1)
0 (A2—=A1)Qo(A2) -+ (A2 = A1)Qn-2(N2)
0 ()‘n - Al)QO()‘n) e (>\n - /\1)Qn—2(/\n)

We use cofactor expansion along the first column to obtain

(A2 = A1)Qo(A2) -+ (A2 = A1)Qn—2(X2)
det = (—1)" det : :
(/\n - Al)QO(An) e ()\n - Al)Qn—Q(An)
Qo(X2) -+ Qn—2(X2)
= (A2 —A)As = A1) - (A — A det | @o(X3) -+ Qn-2(X3)
: Qo(An) o Qnoa(An)

Because @; is monic, we use the induction hypothesis to say this is

= [T cy=2=TIw—2)

j>i>2 J>i

QED. O
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Lagrange Interpolation

Set-up
We have distinct values Aq,..., A\, € F and ay,...,a, € F (which are not necessarily distinct), we want to
find a deg < n — 1 polynomial p(z) such that

p(A1) = a1 .. p(An) = ay,

We solve

p(®) =co+ 1+ + -+ eyt

using the above knowns.
Notice that

p(A1) = a1 e p(An) = ay,
is equivalent to saying
D VIR U co a
1 )\2 e /\g'_1 C1 ag
I /\2_1 Cn—1 Ap
Since we know that all A;’s are distinct, so the matrix V/(\q,...,\,) is invertible. That is,
€o a
C1 1 a9
=V (Ah 7An)
Cn—1 an

Final
Definition 0.49: Final
The final is 2 hours and 30 minutes long consisting five parts.
(a) 5 true or falses, 2 points each
(b) 5 short answer questions, 2 points each
(c) 3 long answer questions, on determinants
(d) 4 long answer questions, on diagonalizability and characteristic polynomial

(e) 3 long answer questions, on eigenspaces and similarity
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