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Lecture 1 - Mon - Jan 8 - 2024

Vector Spaces

For F is a field, suppose V is an F - vector space, then

V is an abelian group under addition (+) with

1. Commutativity

2. Associativity

3. Additive Identity

4. Additive Inverse

In addition, V has scalar multiplication:

· : F × V → V

in particular, λ ∈ F, v ∈ V → λv ∈ V , and

1. 1 · v = v

2. (λ1 + λ2) · v = λ1v + λ2v

3. λ(v1 + v2) = λv1 + λv2

Example 0.1

Let X ̸= ∅ be a set, let F be a field, and let V = {f : X → F} is a vector space,

1. + on V is pointwise addition

(f + g)(x) = f(x) + g(x)

2. 0v is the function that 0v(x) = 0,∀ x ∈ X.

3. λ ∈ F, f ∈ V , then (λf)(x) = λf(x).
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Example 0.2

For n ∈ N and F field, Fn = {a1, a2, . . . , an : a1, . . . , an ∈ F} is a vector space,

1. (a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn).

2. 0⃗ = (0, 0, . . . , 0).

3. λ(a1, . . . , an) = (λa1, . . . , λan).

Example 0.3

If F is a field, F ⊆ K where K is a field extension of F , then K is F - vector space.

Example 0.4

F field, then V = F [x] is F - vector space.

Subspace

Definition 0.1

W is a subspace of V if W ⊆ V is a subgroup and ∀ λ ∈ V, ∀ w ∈W we have λw ∈W .

More concretely, W is a subspace of V if:

1. 0 ∈W

2. ∀ w1, w2 ∈W, w1 + w2 ∈W

3. ∀ λ ∈ F, ∀ w ∈W, λw ∈W

Remark: We do not need to mention the additive inverse because we can get it for free from 3.

Example 0.5

Let X = [0, 1], F = R, and V = {f : X → F}, then the following two are examples of subspaces of V :

1. V ⊇W = {f : X → F, f continuous}

2. V ⊇ U = {f : X → F, f continuously differentiable}

2



Linear Mapping

For F is a field, V,W are F - vector spaces, and T : V → W , then for T to preserve the vector spaces’
structures, we want:

1. T (v1 + v2) = T (v1) + T (v2)

2. T (λv) = λT (v), ∀ λ ∈ F, v ∈ V

3. T (0V ) = 0W

Remark: We can deduce 3 from 1 and 2.

Definition 0.2: Linear map

A map T with properties 1 and 2 is called a linear map.

Example: Let V be the real vector space of continuous functions from [0, 1] to R. Let T : V → R be given
by T (f(x)) =

∫ 1
0 f(x)dx. Show that T is a linear map.

Exercise: Let K be a field of characteristic p. Notice that K has a subfield {0, 1, 2, . . . , p − 1} that we
denote by Fp and so K is an Fp-vector space. Show that T : K → K given by T (x) = xp is a linear map
when we regard K as an Fp-vector space.

Therefore, given a linear map

T : V →W V,W are F - vector space

For the kernel of T , ker(T ) = {v ∈ V, T (v) = 0W } and the image of T , im(T ) = {T (v) : v ∈ V }, we have
the following lemma:

Lemma 0.1

ker(T ) ⊆ V is a subspace of V and im(T ) ⊆W is a subspace of W .

Proof: Definition check lol. 2

Lecture 2 - Wed - Jan 10 - 2024

Recall that from last lecture, for F is a field, V,W are F -v.s. and T : V → W , then T is linear (or
we call it F -linear) if

1. T (v1 + v2) = T (v1) + T for v1, v2 ∈ V

2. T (λv) = λT (v) for λ ∈ F, v ∈ V

Example 0.6

Suppose V = R3 and W = R2, and T : R3 → R2, T (x, y, z) = (2x+ y, 3x− z). Then T is linear.
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Example 0.7

uppose V = C[x] (aka C-v.s.), and T : V → V , T (p(x)) = p′(x), then T is linear.

Example 0.8

uppose K is a field of characteristic p > 0, p prime and K ⊇ {0, 1, . . . , p − 1} =: Fp. Then K is a
Fp-v.s. Let F : K → K, then F = xp is Fp-linear.

Proposition 0.1

The following holds:

1. If T : V →W and S : W → U are linear, then S ◦ T : V → U .

2. If T : V →W is linear and bijective then T−1 : W → V is linear.

3. I : V → V (identity), I(v) = v is linear.

Proof:

1. Notice

S ◦ T (v1 + v2) = S (T (v1) + T (v2))
= S (T (v1)) + S (T (v2))
= S ◦ T (v1) + S ◦ T (v2)

S ◦ T (λv) = S (T (λv))
= S (λT (v))
= λS(T (v))
= λS ◦ T (v)

2. Notice

T
(
T−1 (w1 + w2)

)
= w1 + w2

T
(
T−1(w1)

)
+ T

(
T−1(w2)

)
= w1 + w2

⇒ T
(
T−1 (w1 + w2)

)
= T

(
T−1(w1)

)
+ T

(
T−1(w2)

)
Since T is one-to-one, T−1(w1 + w2) = T−1(w1) + T−1(w2). Moreover,

T (T−1(λw)) = λw

T (λT−1(w)) = λw

⇒ T−1(λw) = λT−1(w)

2
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Example 0.9

et F = C and V = C[x], we say that T : C[x]→ C[x], T (p(x)) = p′(x) is linear, and we can show that
S(p(x)) = xp(x) is linear. Thus

S ◦ T (p(x)) = xp′(x)
T ◦ S(p(x)) = p(x) + xp′(x)

Exercise:
(T ◦ S − S ◦ T ) (p(x)) = p(x) = I(p(x))

Moreover

ker(T ) = { constant polynomial ⊆ C[x]}
im(T ) = C[x]
ker(S) = {0}
im(S) = xC[x] = {p(x) : p(0) = 0}

Isomorphism

If there is an isomorphism from V to W , then we write V ∼= W and say that V is isomorphic to W or that
V and W are isomorphic.
Example:
If V,W are F -v.s. and T : V →W is linear and bijective, then T is an isomorphism from V to W .
Remark: Isomorphism is reflective, symmetric, and transitive.

Example 0.10

Let V = F [x]≤n and W = Fn+1 = {(a1, . . . , an), ai ∈ F}. Then V ∼= W .

Linear Independence

Set-up:

Definition 0.3: Linear combination

F field, V is F -vector space, and S ⊆ V is an F -linear combination of S is a sum of the form
∑

s∈S λiS

for λi ∈ F , and ∀ s ∈ S.

Example 0.11

Let V = F [x], what is a linear combination of S = {1, x, x2, . . .}
Answer:

λ0 · 1 + λ1 · x+ λ2 · x2 + · · · λi ∈ F
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(note this is a polynomial).

Lecture 3 - Fri - Jan 12 - 2024

Recall the definition for linear combination. Alternatively, a linear combination of S can be obtained
by taking a finite subset {v1, . . . , vn} of S and scalars c1, . . . , cn ∈ F and form the sum:

c1v1 + · · ·+ cnvn

Definition 0.4: Span

We define the Span of S ⊆ V , which we denote as span(S) to be the collection of all linear combinations
of elements of S.

Example 0.12

et V = R3, let S = {(1, 0, 0), (0, 2, 0), (1, 3, 0)}, so

span(S) =
{

(a, b, 0) : a, b ∈ R
}

Remark: span(S) ̸= R2, but span(S) ∼= R2.

Example 0.13

et V = F [x],
let S = {1, x, x2, . . . , xn}, so span(S) = F [x]≤n

let T = {1, x2, x4, x6, . . .}, so span(T ) = F [x2] ⊆ F [x].

Proposition 0.2

Let S ⊆ V , then span(S) is a subspace of V .

Proof: To show that span(S) is a subspace of V , we must show that

1. w1, w2 ∈ span(S) ⇒ w1 + w2 ∈ span(S)

2. λ ∈ F, w ∈ span(S) ⇒ λw ∈ span(S)

3. 0 ∈ span(S)

:3 2

Definition 0.5

If span(S) = V , then we say S spans V .

6



Definition 0.6: Linear dependent

Stop staring at this and being confused. I really have nothing here.

Example 0.14

Which of the following subsets of R3 are linear independent?

1. {(1, 2, 3), (1, 1, 1)} ✓

2. {(1, 2, 3), (−2,−4,−6)} ✗

3. ∅ ✓

4. R2 ✗

5. {(0, 0, 0)} ✗

Definition 0.7: Basis

A set S ⊆ V is a basis if S spans V and S is linear independent.

Tutorial 1 - Mon - Jan 15 - 2024

Category

Definition 0.8

A category C consists of

1. A class (collection) of objects: Ob C

2. A class of morphisms for each (A,B) ∈ Ob C×Ob C : Hom(A,B) (”maps” from A to B).

3. Composition ◦ between compatible morphisms: f ∈ Hom(A,B), g ∈ Hom(B,C) →
g ◦ f ∈ Hom(A,C).

4. (h ◦ g) ◦ f = h ◦ (g ◦ f)

5. ∃ 1A ∈ Hom(A,A) s.t. g ◦ 1A = g, 1A ◦ f = f .

Remark: C is locally small if ∀ A,B ∈ Ob C, Hom(A,B) is a set.
Remark: In a category, objects have some structures, morphisms are often structure-preserving.

Functor
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Definition 0.9: Functor

A functor between categories C and D denoted as F : C 7→ D, consists of

1.

map F : Ob C 7→ Ob D
A 7→ FA

2.

map F : HomC(A,B) 7→ HomD(FA,FB)
f 7→ F (f)

subject to

1. F (g ◦ f) = F (g) ◦ F (f)

2. F (1A) = 1F A

Subcategory

Definition 0.10: Subcategory

Subcategory of C is a category D where

1. Ob D ⊆ Ob C

2. ∀ A,B we have HomD(A,B) ⊆ HomC(A,B)

If ∀ A,B we have HomD(A,B) = HomC(A,B), then we say D is a full subcategory.

Example 0.15

1. Abelian group is a subcategory of groups (FULL)

2. Fields is a subcategory of rings (FULL)

3. Rng is a subcategory of Ring (NOT FULL)

Lecture 4 - Mon - Jan 15 - 2024

Remark:

1. If S ⊆ V , S spans V and v ∈ V \S, then S ∪ {v} is linear dependent.

2. If T ⊆ V is linear independent and v ∈ T , then T\ {v} does not span.
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Linear Independent Spanning

Basis

Main Facts

1. Every vector space has a basis

2. If V is a vector space, either every basis for V is infinite, or there exists n ∈ N∪{0} such that all basis
have size n.

Remark: ∅ is a basis for (0).

Proposition 0.3

If V is a vector space, S ⊆ T ⊆ V are subsets with S linear independent, T spanning V , |T | < ∞.
Then there exists a basis B for V with S ⊆ B ⊆ T .

Proof: Let U be the set of all linear independent subsets U with S ⊆ U ⊆ T . Notice U ≠ ∅ since
S ⊆ U . Now let B be an element of U of maximal size. Claim: B is a basis for V . STP: B spans V .
SFAC span(B) ̸= V , then ∃ v ∈ T such that v /∈ span(B). Consider B ∪ {v}, it must be linear dependent
because of the maximality of B. From which we can conclude that v ∈ span(B). Thus we can conclude that
span(B) = V . 2

Zorn’s Lemma

We first define partially ordered set (poset)

Definition 0.11: Poset

Let P be an non-empty set with ≤ binary relation such that the following hold

1. ∀ a ∈ P , a ≤ a. (Reflective)

2. ∀ a, b, c ∈ P , a ≤ b, b ≤ c ⇒ a ≤ c. (Transitive)

3. ∀ a, b ∈ P , a ≤ b, b ≤ a ⇒ a = b. (Anti-symmetric)

Inside poset, we can have chains.

Lecture 5 - Wed - Jan 17 - 2024

Recall the definition for poset from last lecture. We provide an example of a poset:
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Example 0.16

We take a look at the set {1, 2, 3} and all its subsets, and we define the binary operation to be
\subseteq : ⊆. It is easy to find that this forms a poset:

{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

∅

Remark: Taking the proper subsets of {1, 2, 3} would also form a poset with same binary operation.

Exercise: Put a binary relation on the set X of all living things that have ever lived, by declaring that
x ≤ y if and only if x is an ancestor of y. Is this a partial order on X?
Proof: This really depends on how you think ”I am an ancestor of myself” :3 2

Exercise: Let X = N and declare that x ≤ y if x | y. Is this a partial order? Does X have a least element?
Does it have a greatest element.
Proof:

1. It is reflective, since we know x | x

2. It is transitive, since x | y and y | z implies x | z

3. It is antisymmetric sicne x | y and y | x implies x = y

as desired. 2

Terminologies

To state the Zorn’s Lemma, we need to clarify some terminologies:

1. Maximal: An element m ∈ (P,≤) is called the maximal if whenever x ∈ P such that x ≥ m, we
have x = m.

2. Chain: If P is a poset, we say that the subset C ⊆ P is a chain if for all x, y ∈ C, either x ≤ y or
y ≤ x.

3. Upper bound: Given a subset C ⊆ (P,≤), we say that x ∈ P is an upper bound for C if x ≥ c for
all c ∈ C.
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Zorn’s Lemma

Lemma 0.2: more like an axiom

Let P ̸= ∅ be a poset and suppose that every chain C ⊆ P has an upper bound, then P has at least
one maximal element.

Theorem 0.1

Let V be vector space and let S ⊆ T be subset such that S is linear independent and T spans V , then
there exists n basis B for V with S ⊆ B ⊆ T .

Proof:

Warning! The proof is LONG. þ

Let U be the set of linear independent subsets U of V with S ⊆ U ⊆ T . Notice that U ̸= ∅ because S ∈ U .
Therefore we can view U as a poset by declaring

U ≤ U ′ ⇔ U ⊆ U ′

We will now show that every chain in U has an upper bound. Notice that a chain is just a collection of sets
{Uα}α∈Y such that

1. S ⊆ Uα ⊆ T , ∀ α ∈ Y

2. Uα is linear independent, ∀ α ∈ Y

3. ∀ α, β ∈ Y, Uα ⊆ Uβ or Uβ ⊆ Uα

Thus we let U =
⋃

α∈Y

Uα, we claim that U ∈ U and it is the upper bound for the chain {Uα}α∈Y .

It is easy to show that it is the upper bound. However, it is a bit of a work to do to show that
U ∈ U .

First of all, we have U =
⋃

α∈Y

Uα ⊇ Uα ⊇ S and each Uα ∈ T ⇒ U =
⋃

α∈Y

Uα ⊆ T , which implies

that S ⊆ U ⊆ T .
Remark: If X ⊆ V is linear dependent, then there exists finite subset X0 ⊆ X that is linear dependent.

To see that U is linear independent, SFAC that it is linear dependent. By remark, there then exists
finite subset {u1, . . . , un} ⊆ U that is linear dependent. Since U =

⋃
α∈Y

Uα, thus ∀ i ∈ {1, . . . , n}, ∃ αi ∈ Y

such that ui ∈ Uαi
. Hence, u1 ∈ Uα1 , . . . , un ∈ Uαn

. Since Uαi
’s form a chain, we know that ∃i ∈ {1, . . . , n}

such that Uαi
⊇ Uαj

∀ 1 ≤ j ≤ n.
⇒ {u1, . . . , un} ∈ Uαi

However, we know that Uαi
is linear independent, which is a contradiction (linear dependent set being a

subset of a linear independent set). Therefore we obtain that U is linear independent, and thus it is an upper
bound for our chain.

By Zorn, we know there exists a maximal ∈ U , we call it B.
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To finish the proof, we show that B is the basis for V . Since we know B ∈ U , S ⊆ B ⊆ T , and
B is linear independent. Additionally, B spans V , because if it does not, we would have span(B) ̸⊇ T . (If
span(B) ⊇ T ⇒ span(B) ⊇ span(T ) = V ). Therefore ∃ some t ∈ T such that t /∈ span(B). However, this
gives us that B ∪ {t} is still linear independent, which contradicts the maximality of B. It follows that B is
linear independent and it spans V , so it is a basis of V . 2

Remark:

1. If we take S ̸= ∅, then this says if T spans, then there exists a basis B ⊆ T .

2. If we take T = V , then it says that if S is linear independent, then there exists basis B such that
B ⊇ S.

Trailor for next lecture:
Example: We will see that all basis for vector spaces have the same size, and we call the size dimension.

Lecture 6 - Fri - Jan 19 - 2024

Goal: show that if V is a vector space, then either

1. All basis for V are infinite, or

2. there exists n ∈ N ∪ {0} such that all basis for V have size n.

We say that V is infinite-dimensional and write dimV = ∞ if (1) folds. Otherwise we say it is
finite-dimensional and write dimV = n.

Once we establish this, we have facts:

Result 0.1

(a) If W ⊆ V , then dimW ≤ dimV .

(b) If V has a infinite linear independent set, then dimV =∞.

(c) If V has a finite spanning set, then dimV <<∞.

Proof:

(a) Let B be a basis for W , then B ⊆ V and it is linear independent. Thus B can be expanded to a basis B′

of V and since |B| ≤ |B′|, we have dimW ≤ dimV .

(b) Let S ⊆ V be infinite independent subset of V , then we can expand S to a basis B and since B ⊇ S, we
have |B| =∞ ⇒ dimV =∞.

(c) Similar to part (b).

2

Corollary 0.1

If V = set of all continuous functions from R to R, then dimRV =∞ (sub R denote R vector space?).
Remark: We can prove this using HW1Q2 and Result 0.1(b)
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Corollary 0.2

R is infinite-dimensional as Q - vector space.
Remark: We can prove this using HW1Q3 and Result 0.1(b)

Infinite Dimensional Case
Proposition 0.4

Let V be F - vector space. If V has a infinite basis B, then every basis for V is infinite.

Proof: of prop’n
SFAC there is a finite basis S = {v1, . . . , vn}. Since B spans, we can write each v1 as a linear

combination of B, say
vi =

∑
b∈B

λib · b λib ∈ F

If we let Bi =
{
b ∈ B : λib ̸= 0

}
, then Bi is finite and vi ∈ span(Bi). Let B′ = B1 ∪ · · · ∪ Bn, we easily know

that B′ is also finite, and

span(B′) ⊇ span(Bi) ∋ vi ⇒ S ⊆ span(B′)
⇒ span(S) ⊆ span(B′)
⇒ V ⊆ span(B′)
⇒ V = span(B′) ∵ span(B′) cannot be bigger

which contradicts the fact that B is the basis, bacause taking away elements from a basis should not span
the whole vector space anymore. 2

Finite Dimensional Case

Now we consider the case when V has some (hence all) finite basis.
Suppose B1 = {u1, . . . , um}, and B2 = {v1, . . . , vn}, thus |B1| = m and |B2| = n. WLOG m ≤ n, we

will show that m = n.

Lemma 0.3

Let V be vector space, and let {s1, . . . , sp} be linearly dependent set, then there exist i ∈ {0, 1, . . . , p−1}
such that {s1, . . . , si} is linearly independent and si+1 ∈ span

(
{s1, . . . , si}

)
.

Proof: Let i ∈ {0, 1, . . . , p − 1} be the largest index such that {s1, . . . , si} is a linearly independent set.
We know that i ≤ p − 1. Because {s1, . . . , sp} is linearly dependent, then by the definition of i, the set
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{s1, . . . , si+1}, is linearly dependent, so there exists an non-trivial linear combination of {s1, . . . , si+1} equal
to 0. Then we have λi+1 is 0 because {s1, . . . , si} is a linearly independent set, thus

λi+1si+1 = −λ1s1 − · · · − λisi

⇒ si+1 = − λ1

λi+1
s1 − · · · −

λi

λi+1
si

⇒ si+1 ∈ span
(
{s1, . . . , si}

)
as desired. 2

Tutorial 2 - Mon - Jan 22 - 2024

Theorem 0.2: Axiom of Choice

Let C be a collection of non-empty sets (could be infinite, even uncountable), then there exists
f : C →

⋃
A∈C A such that for all A ∈ C, f(A) ∈ A.

Example: If C = {Aα}α∈I , then there exists I-tuple (nα)α∈I such that nα ∈ Aα.

Proposition 0.5

Let g : A→ B be surjective, then there exists f : B → A such that g ◦ f = idB .

Theorem 0.3: Krull

Let R be a ring, where 0 ̸= 1, then R has at least one maximal ideal.

Theorem 0.4: Tyohonoff

If {Kα} is a collection of compact topological spaces, then the product space
∏
α

Kα is also compact.

Example 0.17: Controversies with AC

With Krull, we proved the existence of a maximal ideal in a ring R ̸= {0}.

However, we do not know what M (the maximal) looks like.
Example: Consider R over Q, AC / Zorn tells us that there exists basis B. What does B look like?

1. Exercise: B is uncountable

2. Take S = {log p : p prime}, we know S is linearly independent, and we can extend it into a basis Bs.

Lecture 7 - Mon - Jan 22 - 2024
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Theorem 0.5

Let V be a vector space, and suppose that V has a basis B of size n <∞. Then every basis for V has
size n.

Lemma 0.4: Exchange Lemma

Let S = {u1, . . . , um} and T = {v1, . . . , vn} be subsets of a vector space V , with S spans V and T is
linearly independent. Then for i ∈ {0, 1, . . . ,min(n,m)}, there exists a subset Si of S of size i such
that

{v1, . . . , vi} ∪ {S\Si}

still spans.

How does the lemma give us the theorem???
Proof: How does the lemma imply the theorem?

Suppose that V has two basis of different sizes,

B1 = {u1, . . . , um} & B2 = {v1, . . . , vn}

WLOG, m ≤ n <∞.
Suppose that m < n, hence we have min(n,m) = m. Taking i = m in the exchange lemma, we see

that {v1, . . . , vm} spans V . (In this case where we are applying the exchange lemma, we are taking S = B1

and T = B2, so (S −B1) = ∅, so {v1, . . . , vm} ∪ (S\B1) = {v1, . . . , vm}.) However, since n > m, this means
that B2 = {v1, . . . , vn}, is linearly dependent, contradicting the fact that it is a basis. 2

Proof: Proof of the Exchange Lemma
Suppose we have

S = {u1, . . . , um}︸ ︷︷ ︸
spans

& T = {v1, . . . , vn}︸ ︷︷ ︸
lin. ind.

For i ∈ {0, 1, . . . ,min(n,m)}, we want to find a subset Si ⊆ S of size i such that

{v1, . . . , vi} ∪ (S\Si)

still spans V .
Base case 1: i = 0, so Si = ∅

In this case, we simply have

{v1, . . . , vi} ∪ (S\Si) = S spans V v

Base case 2: i = 1

1. Case 1: ∃ j such that uj = v1

We can take S1 = {uj}, then we would have

(S\Si) ∪ {v1} = S

15



2. Case 2: ̸ ∃ j such that uj = v1

Consider {v1, u1, . . . , um}, we know that it is linearly dependent since v1 /∈ S and S spans.

By our criterion, there exists i ∈ {1, . . . ,m} such that {v1, u1, . . . , ui−1} is linearly independent and
{v1, u1, . . . , ui} is linearly dependent, so ui ∈ span({v1, u1, . . . , ui−1}). Let S1 = {ui}. We claim that

{v1} ∪ (S\{ui}) still spans
X :={v1, u1, . . . , ui−1, ui+1, . . . , um}

Notice that u1, . . . , ui−1, ui+1, . . . , um ∈ span(X) and ui ∈ span({v1, u1, . . . , ui−1}) ⊆ span(X), so

{u1, u2, . . . , um} ⊆ span(X)
⇒ span({u1, u2, . . . , um}) ⊆ span(X)
⇒ span(S) = V ⊆ span(X) ⊆ V
⇒ V = span(X)

Now suppose the claim holds for i ≤ k, 2 ≤ k < min(n,m)
Inductino step: i = k By induction hypothesis, there exists a subset Sk−1 ⊆ S of size k− 1 such

that
{v1, . . . , vk−1} ∪ (S\Sk−1) spans V

After relabelling, we may assume that

Sk−1 = {u1, . . . , uk−1}

so that {v1, . . . , vk−1, uk, . . . , um} spans V .
Now we apply the base case with vk. By our criterioon, there exists i ≥ 0 such that {vk, v1, . . . , vk−1,

uk, . . . , uk+i} is linearly independent and

{vk, v1, . . . , vk−1, uk, . . . , uk+i+1}

is linearly dependent and
uk+i+1 ∈ span{vk, v1, . . . , vk−1, uk, . . . , uk+i} (†)

since T is linearly independent.
So now, Sk = (S\Sk) ∪ {v1, . . . , vk} still spans.
To show this, since {v1, . . . , vk−1, uk, uk+1, . . . , um} spans V , it suffices to show that each of these

vectors is in
span{v1, . . . , vk, u1, . . . , uk+i, uk+i+2, . . . , um}

It is straightforward to see that v1, . . . , vk−1, uk, . . . , uk+i, uk+i+2, . . . , um are in the span. So it remains to
show uk+i+1 is, which follows from (†). The result follows by induction. 2

Result 0.2

If W ⊆ V are vector spaces and W is a subspace, if dimV <∞, then dimW ≤ dimV with equality if
and only if W = V .
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Proof: Let B be a basis for W , then B ⊆ V and is linearly independent, so we can extend B to be a basis
B′ for V and since B ⊆ B′, we have dimW = |B| ≤ |B′| = dimV . Suppose that dimV = |B′| < ∞, then we
have following

dimW = dimV ⇔ B = B′

⇔ span(B) = span(B′)
⇔ W = V

as desired. 2

Example 0.18

What is (n ∈ N)

1. dim (Fn) = n

2. dimF [x]≤n = n+ 1

Lecture 8 (Consolidate) - Wed - Jan 24 - 2024

Suppose V is a F -vector space, and suppose B is its basis, then all the basis of V have the same size
as B.

Example 0.19

Suppose V = Fn for F is a field, for instance, V = R3. Notice if S ⊆ R3 and S either spans or linearly
independent and |S| = 3, then we can conclude that S is a basis.

Proof:

1. If S is linearly independent, then we can expand it to a basis B, since we know that |B| = 3, so B = S.

2. If S spans, then we can contract it to a basis B, since we know that |B| = 3, so B = S.

2

Example 0.20

1. What is dimFn as an F -vector space? n

2. What is dimC as a C-vector space? 1

3. What is dimC as a R-vector space? 2

4. What is dimC as a Q-vector space? ∞ (HW1Q3)

Remark: C and R2 are isomorphic with map T : C→ R2, T : a+ bi 7→ (a, b), and the map is R-linear by
definition check.

17



Off Script

— A note on ”size”

Suppose we have a bijection between apples and
spoons as shown to the right.

{
1, 2

}
⇕ ⇕{
¼1,¼2

}
In general, we say that two sets S and T have the same size (cardinality) if there exists f : S → T

that is one-to-one and onto.
A guy named Cantor noticed that there can be different sizes of infinite size. He showed that you

can never find a one-to-one and onto map from S = N to T = set of all (right) infinite binary strings, i.e.{
ϵ1ϵ2ϵ3 . . . : ϵi ∈ {0, 1}

}
But we wonder why?
Suppose we can find such map f such that

f : N→ T

f(1) = 0 0000 · · ·
f(2) = 1 0 000 · · ·
f(3) = 11 1 11 · · ·
f(4) = 010 1 0 · · ·

...

Now for ith digit of the f(i), we can construct a binary string that is not on the list by taking the
digit opposite to the one we have selected, and we know that the binary string we just created is indeed not
mapped by f .
Remark: However, notice that there is a bijection between

g : T →P(N) (set of all subsets of N)

So Cantor shows that there does not exist an onto map from T to P(N) for T ̸= ∅.

Result 0.3

Two vactor spaces are isomorphic if and only if their basis have the same size (i.e. there is a bijection
between).

Theorem 0.6

Let F be a field, and let V and W be F -vector space with basis B and C respectively. If there exists a
one-to-one and onto map f : B → C, then V ∼= W .

18



Discovery 0.1

Let’s try to build a linear map T : V →W from f :

v ∈ V ; v =
∑
b∈B

λb · b; λb ∈ F & only finitely many λb’s are non-zero

⇒ T (v) = T

(∑
b∈B

λb · b

)
=
∑
b∈B

λb T (b) T (b) := f(b)

Proof: We define T : V →W as follows: If v ∈ V , we write v =
∑
b∈B

λb · b; λb ∈ F & only finitely many λb’s

are non-zero, and we define T (v) =
∑
b∈B

λb · f(b). Since we know that B is a basis, so the linear combination

of each v is unique. This tells us that T is well-defined.

1. Proof showing it is onto

Notice T is onto since if w ∈ W , we can write w =
∑
c∈C

γc · C; γc ∈ F and only finitely many γc’s are

non-zero. And since f is a bijection, thus this is

∑
b∈B

γf(b) · f(b) = T

(∑
b∈B

γf(b)b

)

which implies that T is onto.

2. Proof showing it is one-to-one

By HW2WU5, we know that a linear map T is one-to-one if and only if ker(T ) = {0}. Therefore, to
prove that T is one-to-one, it suffices to prove that ker(T ) = {0}.

If T (v) = 0, then we write v =
∑
b∈B

λb · b; λb ∈ F and only finitely many λb’s are non-zero. Then we

have

T (v) = 0⇒ T

(∑
b∈B

λb · b

)
= 0

⇒
∑
b∈B

λb · f(b) = 0

⇒ λb = 0 ∀ b ∈ B
⇒ v = 0
⇒ ker(T ) = 0

as desired. 2

Terminologies

Now we need to introduce a bit more terminologies to progress further.
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Recall that T : V →W linear, we have

im(T ) ⊆W ker(T ) ⊆ V

We call the dimension of the kernel of T as the nullity, and the dimension of the image of T as the rank.
More specifically

Definition 0.12: rank & nullity

dim
(

ker(T )
)

= nullity(T )

dim
(

im(T )
)

= rank(T )

Theorem 0.7: The rank-nullity theorem

Let V and W be finite dimensional F -vector spaces, T : V →W linear, then we have

dim(V ) = rank(T ) + nullity(T )

Proof: Let d be the nullity of T and e be the rank of T , so there exist

basis {u1, . . . , ud} for ker(T )
basis {w1, . . . , we} for im(T )

Then there exist v1, . . . , ve ∈ V such that T (vi) = wi. Claim: {u1, . . . , ud, w1, . . . , wd} is basis for V 2

Lecture 9 - Fri - Jan 26 - 2024

Exercise: Prove that Mn(F ) is not commutative for n ≥ 2
Proof: Given that both A,B ∈Mn(F ), and suppose C1 = A ·B, thus we can obtain that

C1(i, j) =
n∑

k=1
ai,kbk,j

However, on the other hand, suppose C2 = B ·A, we can obtain that

C2(i, j) =
n∑

k=1
bi,kak,j

Note that C1(i, j) and C2(i, j) are not necessarily equal, and thus we find that multiplication for matrices
∈Mn(F ) is not commutative. 2

Exercise: Show that if R is a ring and n ≥ 1, then we can make a ring Mn(R) of n × n matrices with
entries in R.
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Proof:
2

Exercise: Let Dn(F ) and Un(F ) denote respectively the set of n × n diagonal and upper-triangular
matrices with entries in F . Show that Dn(F ) and Un(F ) are subspaces and subrings of Mn(F ). What are
their dimensions?
Proof:

2

Exercise: Check directly that left multiplication by A is a linear map from Fn to Fm.
Proof:

2

Exercise: Show that if n ≥ 2 then there are nonzero nilpotent elements in Mn(F ).
Proof: Consider the matrices S ∈Mn(F ) such that S(i, j) = 0 for all i ≥ j. 2

Example 0.21

We first finish off the proof for the rank-nullity theorem.

Proof: Let T : V → W be linear, V,W are F -vector spaces. dimV,dimW < ∞. Also let rank of T =
dim(im(T ) ⊆ W ) < ∞, and nullity of T = dim(ker(T ) ⊆ V ) < ∞. Suppose d = dim(ker(T )) = nullity
of T . Then there exists a basis {v1, . . . , vd} for ker(T ). Also Let e = rank(T ), thus there exists a basis
{w1, . . . , we} for im(T ). Goal: show that d+ e = dimV .

Since we know that wi is in im(T ), so we know that ∃ u1, . . . , ue ∈ V such that T (ui) = wi.
Claim: {v1, . . . , vd, u1, . . . , ue} ⊆ V is a basis for V . To see that the set spans, let v ∈ V and we will show

that v is a linear combination of {v1, . . . , vd, u1, . . . , ud}.
Remark: How can we solve v = α1v1 + · · ·+αdvd + β1u1 + · · ·+ βeue. Notice if we apply T to both sides:

T (v) = T (α1v1 + · · ·+ αdvd + β1u1 + · · ·+ βeue)
T (v) = α1T (v1) + · · ·+ αdT (vd) + β1T (u1) + · · ·+ βeT (ue)
T (v) = β1w1 + · · ·+ βewe ← basis for im(T )

Look at v − β1u1 − · · · − βeue. Notice T (v − β1u1 − · · · − βeue) = T (v) − βw1 − · · · − βewe = 0, so
v− β1u1 − · · · − βeue is in ker(T ). So ∃ α1, . . . , αd ∈ F such that v− β1u1 − · · · − βeue = α1v1 + · · ·+ αdv1.

Back to the proof
Since w1, . . . , we spans im(T ), there exists β1, . . . , βe ∈ F such that T (v) = β1w1 + · · ·+βewe. Then

this means v−β1u1− . . . βeue is in ker(T ). Hence ∃α1, . . . , αd ∈ F such that v−β1u1− · · ·−βeue = α1v1 +
· · · + αdvd =⇒ v ∈ span {v1, . . . , vd, u1, . . . , ue}. To show that v1, . . . , vd, u1, . . . , ue is linearly independent.
Suppose that α1v1 + · · ·+ αdva + β1u1 + · · ·+ βeue = 0. Applying T gives

T (α1v1 + · · ·+ αdvd + β1u1 + . . . βeue) = T (0)
=⇒ α1T (v1) + · · ·+ αdT (vd) + β1w1 + · · ·+ βewe = 0

since w1, . . . , we are linearly independent =⇒ β1 = · · · = βe = 0. So now, α1v1 + · · · + αdvd = 0 =⇒ α1 =
· · · = αd = 0 since {v1, . . . , vd} is linearly independent. 2
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Theorem 0.8

If V is n-dimensional, n ∈ N, then V ∼= Fn

Proof: V has a basis {b1, . . . , bn} , Fn has a basis {e1, . . . , en}, where ei = (0, . . . , 0, 1, 0, . . . , 0). We have a
bijection between the bases, which extends to an isomorphism from V to Fn. 2

Matricies

Let F be a field. Given m,n ∈ N, we let Mm,n(F ) denote the set of rectagular m× n arrays,

A =


a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

...
...

... . . . ...
am1 am2 am3 · · · amn


where the aij ’s are in F .

Terminologies

We call aij the (i, j)-entry of A and we call A an m× n matrix with entries in F and we write A(i, j) = aij .

Example 0.22 (
2 π i

e 3.1 −6

)
∈M2,3(C)

Notice that Mm,n(F ) is an F -vector space.
a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

...
...

... . . . ...
am1 am2 am3 · · · amn

+


b11 b12 b13 · · · b1n

b21 b22 b23 · · · b2n

...
...

... · · ·
...

bm1 bm2 bm3 · · · bmn



=


a11 + b11 a12 + b12 a13 + b13 · · · a1n + b1n

a21 + b21 a22 + b22 a23 + b23 · · · a2n + b2n

...
...

... . . . ...
am1 + bm1 am2 + bm2 am3 + bm3 · · · amn + bmn


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Result 0.4

Matrices preserve closedness under addition and scalar multiplication

(A+B)(i, j) = A(i, j) +B(i, j)
(λA)(i, j) = λ · (A(i, j))

The 0 element is

0m,n =


0 · · · 0
... . . . ...
0 · · · 0


For 1 ≤ i ≤ m, 1 ≤ j ≤ n, we let

Ei,j =



0 0 · · · 0 · · · 0
0 0 · · · 0 · · · 0
...

... . . . ... . . . ...
0 0 · · · 1 · · · 0
...

... . . . ... . . . ...
0 0 · · · 0 · · · 0


where aij = 0 (ith row, jth column)

Ei,j(k, ↕) = δi,kδj,↕ for 1 ≤ k ≤ m, 1 ≤ j ≤ n.

δa,b =

1 if a = b

0 otherwise

Ea,b =

1 if i = k, j = L
0 otherwise

Claim: {Eij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a basis for Mm,n(F )

Proof: of spanning

A =


a11 a12 · · · a1m

...
... . . . ...

am1 am2 · · · amn

 ∈Mm,n(F )

Thus we have

A = a11E11 + a12E12 + · · ·+ a1nE1n

+ a11E21 + a12E22 + · · ·+ a1nE2n

+
...

+ a11Em1 + a12Em2 + · · ·+ a1nEmn
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as desired. 2

Proof: of independence

If
m∑

i=1

n∑
j=1

ci,j · Ei,j = 0 =⇒ ci,j = 0, ∀ i, j by looking at the (i, j)-entry. 2

Corollary 0.3

Mm,n(F ) ∼= Fmn as F -vector space.

Proof: We know that Mm,n(F ) has a basis of size m · n. 2

Result 0.5

Let m,n, p ∈ N. We have a multiplication · :

Mm,n(F )×Mn,p(F )→Mm,p(F )

Remark: Notice that the columns of the first matrix and the number of rows of the second matrix must
be the same.

Example 0.23

Let m = 2, n = 3, p = 4.

(
1 −2 6
4 0 5

) 1 0 2 0
0 0 1 3
1 0 −1 2

 =
(

7 0 −6 6
9 0 3 10

)

Exercise: For instance, row 1 , column 4 (a1,4) would be (1 −2 6)

 0
3
2

 = 1 ·0+(−2) ·3+6 ·2 = 6.

Conjecture

∀ ϵ > 0, we can find an algorithm for matrix multiplication n× u matrices runs in O
(
n2+ϵ

)
time.

Lecture 10 - Mon - Jan 29 - 2024

Let F be a field, and m,n ∈ N, then Mm,n(F ) is the set of m× n matrices with entries in F .
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Discovery 0.2: Matrix Multiplication is Associative

Let A ∈Mm,n(F ), B ∈Mn,p(F ), and C ∈Mp,q(F ), and also let i ∈ {1, . . . ,m} and j ∈ {1, . . . , q}.

(
(A ·B) · C

)
(i, j) =

p∑
k=1

(
n∑

l=1
A(i, l)B(l, k)

)
C(k, j)

(
A · (B · C)

)
(i, j) =

p∑
s=1

A(i, s)
(

n∑
t=1

B(s, t)
)
C(t, j)

Notice that
(

(A ·B) · C
)

(i, j) =
(
A · (B · C)

)
(i, j), thus matrix multiplication is Associative.

Exercise: Show that matrix multiplication is also distributive. In particular,

A (B + λC) = AB + λAC

Definition 0.13: Mn(F )

We use Mn(F ) to denote Mn,n(F ).

Theorem 0.9

Mn(F ) is a ring.

Proof: We saw that Mn(F ) has +, and the addition axioms are satisfied since
(
Mn(F ),+

)
is a F -vector

space (and hence an abelian group). Recall we also have multiplication:

Mn(F )×Mn(F )→Mn(F )

Remark: [
0 1
1 1

]n

=
[
Fn−1 Fn

Fn Fn+1

]
∀ n ≥ 1

where Fi is the ith Fibonacci number.
and the matrix multiplication is associative. Moreover, the multiplicative identity is (i, j) = δij .

Last but not the least,
Exercise: Distributivity (relation between addition and multiplication).

Therefore, Mn(F ) is a ring. 2

Example 0.24: Idempotent in M2(R)

Elements in M2(R) that are idempotent:[
1 0
0 1

] [
1 0
0 0

] [
7 e

− 42
e −6

]
. . .
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Result 0.6: Idempotent in M2(R)

Exercise: Show that for a, b ∈ F\{0}, (
a b

x 1− a

)
is idempotent when a(1− a) = xb.

Proof: We can get that (
a b

x 1− a

)n

=
(

a2 + bx ab+ b− ba
ax+ x− ax bx+ (1− a)2

)
Therefore, if a(1− a) = xb, then we will have a2 + bx = a and bx+ (1− a)2 = 1− a. 2

Definition 0.14: Diagonal

A matrix D ∈Mn(F ) is called diaginal if D(i, j) = 0 whenever i ̸= j.
Remark: The set Dn(F ) of n× n diagonal matrices is a subring of Mn(F ) and is also commutative.

Definition 0.15: Upper Triangular

A matrix U is upper triangular if it is of the form

U =


u11 u12 · · · u1n

0 u22 · · · u2n

...
... . . . ...

0 0 · · · unn


in particular, U(i, j) := 0 when i > j.

Lecture 11 - Wed - Jan 31 - 2024

Theorem 0.10

For Ea,b, Ec,d ∈Mn(F ), then we have

Ea,b · Ec,d =

0 if b ̸= c

Ea,d if b = c

Proof: Def’n check. 2

Discovery 0.3

What is E2
i,j ?

Answer: 0 if i ̸= j or Ei,j if i = j.
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Proposition 0.6

Upper-∆ matrices form a subring of Mn(F ).

It is easy to check that it has 0 and ±1, and it is closed under addition. Here, we will prove that it
is closed under multiplication:
Proof: For two matrices A,B ∈Mn(F ), we can write them as in the form

A =
∑
i≤j

aijEij B =
∑
k≤l

bklEkl

Therefore

A ·B =
∑
i≤j

∑
k≤l

aijEijbklEkl

=
∑
i≤j

∑
k≤l

aijbkl EijEkl︸ ︷︷ ︸
̸=0 @ j=k

=
∑

i≤j≤l

aijbjlEil

so the (i, l) entry is
l∑

j=i

aijbjl, which implies that it is an empty sum when i > j, which then implies that

A ·B is upper-∆. 2

GLn(F ) – General Linear group of F

Discovery 0.4

Mn(F ) is a ring, so its units form a group. We let GLn(F ) denote its set of units.

Definition 0.16: Invertible

A matrix A is called invertible (or non-singular) if it is in GLn(F ) and it is called non-invertible or
singular otherwise.

Theorem 0.11(
a b

c d

)
∈ GL2(F ) if and only if ad− bc ̸= 0.
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Proof:

1. (=⇒)
Suppose ad = bc and A is invertible, then we know that there exists B ∈ GL2(F ) such that

B

(
a b

c d

)
=
(
a b

c d

)
B = I

Consider
[
b

−a

]
∈M2,1(F ), so we have

B

((
a b

c d

)[
b

−a

])
= B

[
0

bd− ad

]
=
[

0
0

]
(
B

(
a b

c d

))[
b

−a

]
= I

[
b

−a

]
=
[
b

−a

]

which implies that a = b = 0. Similarly, we have c = d = 0. However, this contradicts the fact that

B

(
a b

c d

)
= I. Hence we have that ad ̸= bc.

2. (⇐=)

Since we have ad− bc ̸= 0, thus we consider B = 1
ad− bc

(
d −b
−c a

)
= A−1

woo hoo. 2

For what follows, we will think of Fn as Mn,1(F )

Example 0.25

We have

Fn =
{

(a1, a2, . . . , an), a1, . . . , an ∈ F
}

Mn,1(F ) =




a1

a2
...
an

 , a1, . . . , an ∈ F


Remark: If A ∈Mm,n(F ) and v ∈Mn,1(F ), so A · v ∈Mm,1(F ) = Fm.

28



Result 0.7

If A is a m× n matrix, then it can be viewed as a map

TA : Fn → Fm

given by

TA



a1
...
an


 = A


a1
...
an


Example: Notice that TA is linear.

Universal Property

Theorem 0.12: Universal Property

] Let V and W be vector spaces and let B be a basis for V , Our goal is to understand the linear maps
from V to W (hard). Universal Property tells us that:

Let f : B → W be a set map, then there ∃! (exists a unique) linear map T : V → W

such that T
∣∣∣
B

= f (with restriction to B).

Lecture 12 - Fri - Feb 2 - 2024

Definition 0.17: Linear Transformation

Let V,W be F -vector space, and T : V → W linear, we’ll say T is a linear transformation. When
V = W , we’ll say that T is a linear operator.

Universal Property

We can make linear transformation
T : V →W

as follows:

We fix a basis B for V and specify what T does to B (no constraints) and then T is uniquely
determined.
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Example 0.26

Suppose we have

T : R2 → R3

[
1
0

]
7→

 5
−π
√
e


[

0
1

]
7→

 5
−π
√
e


Thus we have

T

([
a

b

])
= T

(
a

[
1
0

]
+ b

[
0
1

])
· · ·

Theorem 0.13

Let V and W be vector spaces. Let B be a basis for V . If f : B →W (set map) then there exists linear
transformation

T : V →W

such that T (b) = f(b) for all b ∈ B. Moreover, if S : V → W such that S(b) = f(b) for all b ∈ B, then
S = T .

Proof: We recall that if B is a basis for V , then if v ∈ V , there is a unique linear combination

v =
∑
b∈B

λb · b λb ∈ F only finitely many are non-zero

Then if T : V →W is linear and T (b) = f(b) for all b ∈ B, we must have

T

(∑
b∈B

λb · b

)
=
∑
b∈B

T (λb · b)

=
∑
b∈B

λb · f(b)

so we see that if this T is linear, so it is unique. Let’s check if T is linear:
Remark: T is linear iff T (v + λw) = T (v) + λT (w) for all v, w ∈ V and λ ∈ F .

Hence let v, w ∈ V and λ ∈ F , then we can write

v =
∑

αb · b w =
∑

βb · b

so

v + λw =
∑

(αb + λβb) · b

⇒ T (v + λw) = T (v) + λT (w)

Thus completing the proof. 2
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Result 0.8

In what follows, we identify

Fn ←→Mn,1(F ) =




a1

a2
...
an

 : a1, . . . , an ∈ F


Fm =←→Mm,1(F )

Theorem 0.14

Every linear transformation
T : Fn → Fm

is of the form T (v) = Av ∈ Fm, v ∈Mn,1(F ) for some A ∈Mm,n(F ).

Remark: Notice if A is matrix, then v → Av is linear.
Proof: Take the standard basis for Fn. Let

A =

 | | |
T (e1) T (e2) · · · T (en)
| | |


then A(ej) = T (ej). Since A and T does the same on a basis, then they are the same by Universal Property.
2

Example 0.27

Find the matrix of the linear operator, T : R2 → R3, where T rotates points counterclockwise 45◦ with
respect to the origin:

T

([
1
0

])
=
[

1√
2

1√
2

]
T

([
0
1

])
=
[
− 1√

2
1√
2

]
then the matrix for T is

A =
(

1√
2 − 1√

2
1√
2

1√
2

)

Example 0.28

What does the linear transformation [
x

y

]
7→

(
2 0
0 3

)[
x

y

]

do to the unit disc?

31



Exercise: Ellipse.

Definition 0.18

We say that the matrix

A =

 | | |
T (e1) T (e2) · · · T (en)
| | |


is the matrix of T with respect to the standard basis.

We’d like to extend this idea to understand linear transformation between abstract finite dimensional
vector space.

Example 0.29

Let
V = R[x]≤2 W = R[x]≤3

then
T (p(x)) =

∫ x

0
p(t) dt

is a linear transformation.
Let the following be ordered set

B = (1, x, x2) for V
C = (1, x, x2, x3) for W

so we can use B and C to give us elements of V and W coordinates:

[
a+ bx+ cx2

]
B

=

ab
c


[
α+ βx+ γx2 + δx3

]
C

=


α

β

γ

δ


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Tutorial 4 - Mon - Feb 5 - 2024

Regular Language

Definition 0.19∑
be finite alphabet.

e.g. {a, b}
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Definition 0.20: Semigroup∑∗
= set of finite strings (words) on

∑
e.g. ∑

= {a, b} ⇒
∑∗

∋ a, ab, baba, abba, aaaaa, . . .

Example 0.30

Definition 0.21: DFA

A deterministic finite-state automaton (DFA)

1. input alphabet
∑

2. has finite set of states

Definition 0.22: Regular Language

The set of all strings accepted by a DFA is called a regular Language.

Theorem 0.15: Church-Turing Thesis

Every algorithm can be similated by what’s called a Turing machine, whuch is simulated with finite
number of states and two stacks.
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Example 0.31

Definition 0.23: Adjacency Matrix

See the example below:

Example 0.32

Given a DFA, we associate an adjacency matrix as follows:

We define matrix A whose (i, j)th entry is the number of paths from qi to qj :

A :=


0 1 0 1 0
0 1 1 0 0
0 0 1 0 1
0 0 0 2 0
0 0 0 1 1


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Theorem 0.16

Let A be the adjacency matrix of DFA with states q1, . . . , qs, then An(i, j) = number of paths of length
n from qi → qj .

Proof: By induction.

1. Base case: definition

2. Hypothesis: Yes for length k

3. Proof Step: Yes for length k + 1

orz. 2

Now we can compute the strings accepted by DFA’s. For an s× s adjacency matrix A, we have

v =


ε1
...
εs

 where εi =

1 qi is accepted
0 qi is not accepted

and
w =

[
1 0 · · · 0

]
Example 0.33

Theorem 0.17

Have wAnV is the number of strings of length n accepted by the DFA.

Proof: Number of strings accepted by DFA is the number of paths accepted of length n started from q1. 2
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Example 0.34

Lecture 13 - Mon - Feb 5 - 2024

Definition 0.24: Ordered Basis

An ordered basis B for V is a list v1, v2, . . . , vn of distinct vectors such that {v1, . . . , vn} is a basis for
V .

Discovery 0.5

Significance:
WE can use ordered bases to endow vector spaces with coordinates.

But how do we do this?
Given v ∈ V ,

1. Step 1:

Express v uniquely as a linear combination of our ordered basis

2. Step 2:

[v]B =


c1

c2
...
cn

 ∈ Fn
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Example 0.35

V = R3 and B =


0

0
1

 ,
0

1
0

 ,
1

0
0


, what is

2
3
4


B

?

Solution: The answer is

4
3
2



Theorem 0.18

dimV = n, the map

θ : V → Fn

θ(v) = [v]B

is a linear map that is an isomorphism.

To prove the theorem, we first prove the following proposition.

Proposition 0.7

If V and U are two n-dimensional vector spaces (n <∞) and T : V → U is linear then

T is 1-to-1 ⇔ T is onto ⇔ T is isomorphism

Proof: We use Rank-Nullity Theorem,

ker(T ) = (0) ⇒ dimV = dim(im T ) ⇒ onto

Similar proof follow. 2

Proof: of theorem To see that θ is linear, we must show that

θ(v + λw) = θ(v) + λθ(w) ∀ v, w ∈ V, λ ∈ F

Recall B = (v1, . . . , vn), let [v]B =


c1
...
cn

 and [w]B =


d1
...
dn

, then we have

v = c1v1 + · · ·+ cnvn

w = d1v1 + · · ·+ dnvn

so
v + λw = (c1 + λd1)v1 + · · ·+ (cn + λdn)vn

which gives us
[v + λw]B = [v]B + λ[w]B
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as desired.
Therefore, to show that θ is isomorphism, STP θ is one-to-one, so STP ker(θ) = (0). Suppose that

θ(v) =


0
...
0

, so we have

[v]B =


0
...
0

 = 0 · v1 + · · ·+ 0 · vn = 0

⇒ ker(θ) = (0)

as desried. 2

Commutative Diagram

∃ ! a matrix A that makes the diagram commutative. I.e.

∀ v ∈ V, [T (v)]C = A︸︷︷︸
m×n

[v]B︸︷︷︸
n×1

∈ Fm

Example 0.36

Let V = R[x]≤2 has basis B = (1, x, x2) and W = R[x]≤3 has basis C = (1, x, x2, x3). Let T : V → W

such that T (p(x)) =
∫ x

0
p(t) dt. Find A ∈M4,3(R) that makes the diagram commutative.

Look at the standard basis for R3:

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1


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Thus we have

e1 →


0
1
0
0

 , e2 =


0
0
1
2
0

 , e3 =


0
0
0
1
3


which implies that

A =


0 0 0
1 0 0
0 1

2 0
0 0 1

3



Definition 0.25

In general, the matrix A with

is called the matrix of T with respect to the ordered basis B and C and we write

A = [T ]B,C

(denoting convert B to C).

Discovery 0.6

How do we find [T ]B,C?
Suppose we have

B = (b1, . . . , bn)
C = (c1, . . . , cm)

then we would have

A = [T ]B,C =

 | |
[T (b1)]C · · · [T (bn)]C
| |


a m× n matrix.
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Example 0.37

Let V = R[x]≤2 and W = {p(x) : deg(p) ≤ 3, p(1) = 0}. Let T : V → W such that T (p(x)) =
p(x)(x− 1), which is a linear map. Find [T ]B,C with B = (x2, x, 1) and C = (x− 1, x2 − 1, x3 − 1).

Proof: Notice that T (x2) = x3 − x2 = (x3 − 1)− (x2 − 1), and with similar process, we can find that

[T (x2)]C =

 0
−1
1


[T (x)]C =

−1
1
0


[T (1)]C =

1
0
0





[T ]B,C =

 0 −1 1
−1 1 0
1 0 0



as desired. 2

Lecture 14 - Wed - Feb 7 - 2024

Recall the commutative diagram,

V W

Fn Fm

T

[T ]B,C

⟳

Theorem 0.19

For all v ∈ V ,
[T ]B,C [v]B = [T (v)]C

Proof: Consider the LHS, for v = bj , we have

LHS = [T ]B,C [bj ]B

= [T ]B,C



0
...
1
...
0


= jth column of [T ]B,C

= [T (bj)]C
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so we have [T ]B,C [bj ]B = [T (bj)]C for j = 1, . . . , n. Hence the linear transformation for

V → Fm given by
v 7→ [T ]B,C [v]B and the ones given by
v 7→ [T (v)]B agree on a basis for V

so by Universal Property, they are the same. 2

Composition

Suppose we have

V W U

n-dim m-dim p-dim
B = (b1, . . . , bn) C = (c1, . . . , cm) D = (d1, . . . , dp)

Therefore

T : V →W

S : W → U

}
⇒ S ◦ T : V → U

Now we are interested in what the relationship is between

[S ◦ T ]B,D & [T ]B,C & [S]C,D

Theorem 0.20

We have
[S ◦ T ]B,D︸ ︷︷ ︸

p×n

= [S]C,D︸ ︷︷ ︸
p×m

· [T ]B,C︸ ︷︷ ︸
m×n

Proof: We have the commutative diagrams

V W

Fn Fm

T

[T ]B,C

⟳

W U

Fm F p

T

[S]C,D

⟳

Thus concatenating the two diagrams gives us

V W U

Fn Fm F p

T S

[T ]
⟳

Therefore we have

→→ ↱ := [S(T (v))]D

↰

→→ := [S]C,D[T ]B,C [v]B
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hence

[S ◦ T ]B,D[v]B = [S(T (v))]D = [S]C,D[T ]B,C [v]B
⇒ [S ◦ T ]B,D = [S]C,D[T ]B,C

thus we complete the proof. 2

Remark: If A1, A2 ∈Mm,n(F ) such that A1v = A2v ∀ v ∈ Fn, then A1 = A2.

Midterm
Definition 0.26: Midterm

The midterm is 1 hour and 50 minutes long consisting four parts.

(a) 5 multiple choices, (2 marks each, 10 marks in total)

(b) 5 true or falses, (2 marks each, 10 marks in total)

(c) 3 parts, linear independece, dependence, and span (10 marks)

(d) 3 parts, matrices and linear transformation (10 marks)

Lecture 15 - Fri - Feb 9 - 2024

Here we introduce a second proof for the Theorem introduced above (instead of depicting diagrams).
We first introduce a lemma:

Lemma 0.5

Let A,B ∈Mm,n(F ), if Av = Bv for all v ∈ Fn, then A = B.

Proof: of the lemma
This is easy to see if we pass in the standard basis vectors to show that each entry of A is equal to the
corresponding entry in B, thus A and B are equal to each other. 2

Proof: of the theorem
Let [v]B ∈ Fn, consider [S]C,D[T ]B,C [v]B. Hence by associativity, we have

[S]C,D[T ]B,C [v]B = [S]C,D

(
[T ]B,C [v]B

)
= [S]C,D

(
[T (v)]C

)
= [S(T (v))]D

Notice that [S(T (v))]D = [(S ◦ T )(v)C ]. On the other hand, [S ◦ T ]B,C [v]B = [(S ◦ T )(v)]D. 2

43



Result 0.9

Key properties:

1. [T ]B,C [v]B = [T (v)]C

2. [S]C,D[w]C = [S(w)]D

3. [S ◦ T ]B,D = [S]C,D[T ]B,C

Example for Commutative Diagram Composition

Suppose we have a vector space V with ordered basis B = (b1, . . . , bn), and a linear transformation T : V → V ,
(more precisely, a linear operator).
Remark: Often it is the case that we have another ordered basis C for V and we would like to know that
relation between [T ]B and [T ]C .

Definition 0.27

We let [T ]B denote [T ]B,B.

Example 0.38

Suppose for a linear transformation

T : R3 → R2

T


xy
z


 =

x+ 2y + 3z
x+ y + z

2x+ y + z


and suppose we have two ordered basis B and C such that

B =


0

0
1

 ,
0

1
0

 ,
1

0
0




C =


1

0
0

 ,
1

1
0

 ,
1

1
1




Discovery 0.7

We want to find [T ]B and [T ]C .
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We first find [T ]B:

1st column : T (b1) =

3
1
1

 =

1
1
3


B

2nd column : T (b2) =

2
1
1

 =

1
1
2


B

3rd column : T (b3) =

1
1
2

 =

2
1
1


B

Thus we have [T ]B =

1 1 2
1 1 1
3 2 1

 as desired. Similarly we would find [T ]C =

 0 1 3
−1 −1 −1
2 3 4

.

Discovery 0.8: What is the relationship?

[v]B ∈ R3 R3 ∋ [T (v)]B

[v]C ∈ R3 R3 ∋ [T (v)]C

[T ]B

[T ]C

Let S : R3 → R3 be the linear map with the property that S[v]B = [v]C , so S is a matrix.
Therefore for matrix S:

1st column : S[b1]B = [b1]C ⇒

1
0
0

 =

0
0
1


C

=

 0
−1
1



2nd column : S[b2]B = [b2]C ⇒

0
1
0

 =

0
1
0


C

=

−1
1
0



3rd column : S[b3]B = [b3]C ⇒

1
0
0

 =

1
0
0


C

=

1
0
0



Thus we have [S]B→C =

 0 −1 1
−1 1 0
1 0 0

 as desired. Similarly we would find [S]C→B =

0 0 1
0 1 1
1 1 1

.

45



Result 0.10

We have

[S]B→C [S]C→B = I

[S]C→B[S]B→C = I

[S]C→B[T ]B[S]B→C = [T ]C

Lecture 16 - Mon - Feb 12 - 2024

Recall last lecture’s example. In general, if for vector space V with ordered basis B = (b1, . . . , bn),
suppose T : V → V is linear, then

[T ]B =

 | |
[T (b1)]B · · · [T (bn)]B
| |


Definition 0.28: Similarity

Let A and B be n × n matrices. We way that B is similar to A if there exists S ∈ GLn(F) (units of
Mn(F )) such that B = S−1AS.

Proposition 0.8: Similarity is equivalence relation

Similarity is equivalence relation.

Proof: We need to prove reflexivity, symmetry and trnasitivity:

1. Reflexive
We have A = I−1AI, so A is similar to A.

2. Symmetric
If B is similar to A, then there exists S ∈ GLn(F) such that B = S−1AS, thus we have

A = SBS−1 = (S−1)−1B(S−1)

3. Transitive
If A is similar to B which is similar to C, then we know

A = S−1BS

B = T−1CT

which yields us that

A = (TS)−1C(TS)

:3 2
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Definition 0.29: Notation

If A and B are similar, we write A ∼ B.

Definition 0.30: Trace

Given an n× n matrix A, we define the trace of the matrix as

tr(A) = sum of entries on the main diagonal

Theorem 0.21

For A,B ∈Mn(F ), we have
tr(AB) = tr(BA)

Proof: we have

tr(AB) =
n∑

i=1
(AB)(ii)

=
n∑

i=1

(
n∑

k=1
A(ik)B(ki)

)

tr(BA) =
n∑

i=1

(
n∑

k=1
B(ik)A(ki)

)

same thing. 2

Corollary 0.4

If A and B are similar, then tr(A) = tr(B).

Proof: We know that for some S ∈ Gln(F) we have

B = S−1AS

Thus we let X = S and Y = AS−1, which gives us that

tr(B) = tr(XY ) = tr(Y X) = tr(A)

as desired. 2

Result 0.11

Since [T ]B and [T ]C are similar, so
tr([T ]B) = tr([T ]C)
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Definition 0.31: Notation

If V and W are F -vector spaces, then we write either L(V,W ) or HomF(V,W) for the set of linear
maps from V to W .

Example 0.39

HomF(Fn,Fm) = Mm,n(F).

Theorem 0.22

Let V and W be F -vector spaces, suppose that dimV = n and dimW = m, then we have

HomF(V,W) ∼= Mm,n(F) as F -vector spaces

Discovery 0.9: HomF(V,W) is an F -Vector Space

Suppose we have S, T ∈ HomF(V,W), we know that for v ∈ V , we have (T + S)(v) ∈W . Moreover,

(T + S)(v1 + λv2) = T (v1 + λv2) + S(v1 + λv2)
= T (v1) + T (λv2) + S(v1) + S(λv2)

HomF(V,W) ∋ 0 : = 0V,W (v) = 0
−T is also linear

Thus we have that HomF(V,W) is an abelian group under +.

Lecture 17 - Wed - Feb 14 - 2024

Proof: of the above theorem: Define

ψ : HomF(V,W)→Mm,n(F )
ψ(T ) = [T ]B,C

T : V →W

We need to show that ψ is linear and one-to-one and onto.

1. Linear
We want to show that

ψ(T + λS) = ψ(T ) + λψ(S)

for T, S : V →W and λ ∈ F . i.e.

[T + λS]B,C = [T ]B,C + λ[S]B,C

48



Recall that jth column of y : V →W , [y]B,C , is [y(bj)]C . STP the jth columns are the same. We know
that

jth column of [T + λS]B,C = [(T + λS)(bj)]C
= [T (bj) + λS(bj)]C
= [T (bj)]C + [λS(bj)]C
= jth column of [T ]B,C + λ · jth column of [S]B,C

= jth column of ([T ]B,C + λ · [S]B,C)

which implies linearity.

2. One-to-one
STP ker(ψ) = (0), suppose T ∈ ker(ψ),

ψ(T ) = 0
⇒ [T ]B,C = [0]

⇒ jth column of [T ]B,C = 0 for j = 1, 2, . . . , n

⇒ [T (bj)]C =


0
...
0

 for j = 1, 2, . . . , n

⇒ T (bj) = 0 for j = 1, 2, . . . , n
⇒ T = 0

3. Onto
Consider ψ : HomF(V,W)→ Mm,n(F), we let

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
... . . . ...

an1 an2 · · · ann


we must find T : V →W such that ψ(T ) = [T ]B,C = A. We need to find the jth column of

[T ]B,C =


aij

...
anj

 ⇔ a1jc1+a2jc2+· · ·+amjcm = T (bj). By Universal Property, there exists T : V →W

linear such that T (bj) = a1jc1 + a2jc2 + · · ·+ amjcm, ∀ j, which implies that

[T ]B,C = A =
(. . .

)
thus we complete the proof. 2
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Rank, Nullity, Transpose

We know that both Mm,n(F ) and Mn,m(F ) both have dimension m×n. In particular, they are isomorphic.
We define the transpose map

T : Mm,n(F )→Mn,m(F )
A; AT

Flipping along the main diagonal

Example 0.40

For A,B ∈Mm,n(F ), we have (A+ λB)T = AT + λBT , in particular, T is a linear map.

Theorem 0.23

If A ∈Mm,n(F ), B ∈Mn,p(F ), then
(AB)T = BTAT

Proof: Consider (AB)T (ij) = (AB)(ji) =
n∑

k=1
A(jk)B(ki).

Similarly BTAT (ij) =
n∑

k=1
BT (ik)AT (kj) =

n∑
k=1

B(ki)A(jk).

Thus they are the same. 2

Corollary 0.5

(A1A2 · · ·Ad)T = Ad
TAd−1

T · · ·A1
T whenever the product makes sense.

Example 0.41

Consider D : R[x]≤2 → R[x]≤1 be the differentiation map, with basis B = (1, x, x2), C = (1, x) respec-
tively. Suppose we want to find a linear map T : R[x]≤1 → R[x]≤2 such that [T ]C,B = [D]TB,C .

[D]B,C =
(

0 1 0
0 0 2

)
⇒ DT

B,C =

0 0
1 0
0 2


Hence we have

[T ]C,B =

0 0
1 0
0 2

 =⇒ [T (1)]B =

0
1
0

 and [T (x)]B =

0
0
2

⇒ T (1) = x, T (x) = 2x2

thus T (a+ bx) = ax+ 2bx2.
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Lecture 18 - Fri - Feb 16 - 2024

Let A be a m× n matrix in Mm,n(F ), then we know that A indces a linear map:

TA : Fn Fm

Mn,1(F ) Mm,1(F )

T

[T ]B,C

T (v) = A · v

We define

1. rank(A) := rank(TA) = dim(im(TA))

2. nullity(A) := nullity(TA) = dim(ker(TA))

3. null space of A := ker(TA)

In general,

(x1, . . . , xm)


a11 a12 · · · a1n

a21 a22 · · · a2n

...
... . . . ...

am1 am2 · · · amn


=x1[a11, a12, . . . , a1n] + x2[a21, a22, . . . , a2n] + · · ·+ xm[am1, am2, . . . , amn]

Corollary 0.6

Let A ∈Mm,n(F ), then rank(A) = dim(span(col of A)), i.e.

A =

 | | · · · |
c⃗1 c⃗2 · · · c⃗n

| | · · · |

 c⃗i ∈Mm,1(F )

⇒ rank(A) = rank(span({c⃗1, c⃗2, . . . , c⃗n}))

Proof: We know that rank(A) = dim(im(TA)), where

Fn → Fm TA(v) = A · v

Notice that TA


x1

x2
...
xn

 = A ·


x1

x2
...
xn

 = x1c⃗1 + · · ·+xnc⃗n, so im(TA) ⊆ span({c⃗1, c⃗2, . . . c⃗n}). Notice c⃗j ∈ im(TA)

since c⃗j = A · ej , so span({c⃗1, c⃗2, . . . c⃗n}) ⊆ im(TA), so rank(A) = dim(im(TA)) = dim(span({c⃗1, c⃗2, . . . c⃗n})).
2
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Definition 0.32: Column Rank & Row Rank

If A =

 | | · · · |
c⃗1 c⃗2 · · · c⃗n

| | · · · |

, we call dim(span({c⃗1, c⃗2, . . . c⃗n})) the column rank of A, if A =


− r⃗1 −
− r⃗2 −
...

...
...

− r⃗m −

, then we call dim(span({r⃗1, r⃗2, . . . r⃗m})) the row rank of A.

Theorem 0.24

Let A be m× n, then row rank A = column rank A

Lemma 0.6

Let A be an m× n matrix. Let c⃗1, c⃗2, . . . , c⃗p ∈ Mm,1(F ) be a basis of the span of columns of A, then
there exists a p× n matrix R such that

A =

 | | · · · |
c⃗1 c⃗2 · · · c⃗p

| | · · · |

R, let C =

 | |
c⃗1 · · · c⃗p

| |



Proof: Let Uj denote the jth column of A so

A =

 | | · · · |
u⃗1 u⃗2 · · · u⃗n

| | · · · |


By assumption, each Uj is in the span of c⃗1, c⃗2, . . . , c⃗p. In particular, there exists r1j , r2j , . . . , rpj ∈ F such
that

U⃗j = r1j c⃗1 + · · ·+ rpj c⃗p

Let R(ij) = rij , then we have

C ·R =



| |

C


r11
...
rp1

 · · · C


r1n

...
rpn


| |

 =

 | |
U⃗1 · · · U⃗n

| |

 = A

2

Proof: of Theorem
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Let p = column rank of A and let c⃗1, c⃗2, . . . , c⃗p be a basis for the column space of A. Let C = | |
c⃗1 · · · c⃗p

| |

. Then there exists a p× n matrix R such that A = C · R. Write R =


− r⃗1 −
− r⃗2 −
...

...
...

− r⃗m −

, then

notice every row of C · R is a linear combination of r⃗1, . . . , r⃗p, which implies that every row of A is in the
span({r⃗1, . . . , r⃗p}). 2

Lecture 19 - Mon - Feb 26 - 2024

(1) How does one find the null space of a matrix?

(2) How does one find the image of a matrix?

(3) How does one find the inverse of an invertible matrix

(4) How does one find the rank of a matrix?

(5) How does one find the [x]B for x ∈ V , B an ordered basis?

(6) How to check if a set is linearly independent?

(7) How do we check if a vector is in the span of a set?

Remark: For 1 and 2, we typically want to find a basis for these spaces.

Vector Equations

For A ∈Mm,n(F ), x⃗ ∈ Fn and b⃗ ∈ Fm, a vector equation is in the form of

Ax⃗ = b⃗

Moreover, when b⃗ = 0 we call the equation homogenous, otherwise we say it is non-homogenous.

Elementary Row Operations

Ler A be an m×n matrix, we will say A′ ∈Mm,n(F ) can be obtained from A via a elementary row operations
if one of the following these holds:

(a) The ith row of A′ is c times ith row of A for c ∈ F and all other rows are the same.

(b) We swap any two rows of A

(c) A′ ith row is obtained by replacing ith row of A by ith row of A and c × (jth) row of A for i ̸= j and
c ∈ F .

Remark: If we can obtain A′ from A via elementary row operations, then we can obtain A from A′ from
elementary row operations.
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Definition 0.33: Row-Equivalent

We will write A → A′ if A′ can be ontained by an elementary row operations, we will say A,B ∈
Mm,n(F ) are row equivalent if there exists d ≥ 0 and A = A0, . . . , Ad = B ∈Mm,n(F ) such that

A = A0 → · · · → Ad = B

Proposition 0.9

Row equivalence is an equivalence relation on Mm,n(F ).

Proof: Definition check. 2

Theorem 0.25

Let A,B ∈ Mm,n(F ), if A and B are row equivalent, then Ax⃗ = 0⃗ and Bx⃗ = 0⃗ have the same set of
solutions.

Lecture 20 - Wed - Feb 28 - 2024

Discovery 0.10: Fact 1

(I + c · Eij)A, i ̸= j

performs an elementary row operation to A, in which we take the ith row of A and add c · jth row of
A to it.

Remark: Notice that if i ̸= j, then we have

(I + c · Eij)(I − c · Eij) = I

Important to note that difference of squares does not generally hold for matrices.

Discovery 0.11: Fact 2∑
r ̸=i

Err + c · Eii

A, c ̸= 0

performs an elementary row operation to A, in which we take the ith row of A and scale it by c ̸= 0.

Discovery 0.12: Fact 3∑
r ̸=i,j

Err + Eij + Eji

A, c ̸= 0

performs an elementary row operation to A, in which we interchange row i and j.
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Corollary 0.7

If A and B are row equivalent m× n matrices, then there exists U ∈ GLm(F ) such that B = UA.

Proof: Since B and A are row equivalent, there exist A = A0, A1, . . . , Ad = B such that

A = A0 → A1 → · · · → Ad = B

Thus by Fact 1-3, for i = 0, 1, . . . , d− 1, we have Ai+1 = UiAi for Ui ∈ GLm(F ), so we have

B = Ad = Ud−1Ud · · ·U0A0

Because for the fact that Ud−1, Ud, . . . , U0 ∈ GLm(F ) which is a group, so we can take their product to be
U , which then yields us that B = UA. 2

Proof: of theorem 0.5
By Corollary, B = UA for U ∈ GLm(F ), so we have

Bx⃗ = 0⃗ ⇔ UAx⃗ = 0⃗ ⇔ U−1UAx⃗ = U−10⃗ ⇔ Ax⃗ = 0⃗

thus completing the proof. 2

Example 0.42

Find all solution to the system:

x1 + 2x3 + 3x4 + 8x5 + x6 = 0
2x1 + 5x3 + 7x4 + 3x5 = 0
3x1 + 6x3 + 8x4 + 5x5 = 0

x1 + 4x3 + 5x4 + 8x5 + 2x6 = 0

Bell cooking.
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Lecture 21 - Fri - Mar 1 - 2024

Definition 0.34: RREF

A matrix A is in row-reduced echelon form (RREF) if the following hold:

• the first nonzero entry in each nonzero row of A is equal to 1 (we call these the pivots of A and their
corresponding columns the pivot columns of A);

• each column containing the leading 1 of some non-zero row has all of its other entries equal to zero;

• all zero rows of A are below all nonzero rows;

• if r⃗1, . . . , r⃗r are the nonzero rows of A and the leading nonzero 1 of r⃗i occurs in position ki (i.e., in
column ki) then k1 < k2 < · · · < kr.

We’ll see that if A and B are in RREF and are row equivalent, then A = B. In other words, RREF
of a matrix is unique.

Theorem 0.26

Every m× n matrix A is equivalent to a matrix in RREF.

Proof: We do this by induction on the number of rows (m)

1. Base Case, m = 1:
Then either A is the zero row and we are done, or A is not zero, then there exists some i such that the
ith column of A is not zero and the column before that is 0, where we can simply scale the row by 1/c
and thus obtain the matrix in RREF.

2. Induction Hypothesis, let k ≥ 2 and the result holds whenever m < k:

3. Induction Step, consider the case when m = k:
Let c⃗1, . . . , c⃗n denote the columns of A and let i be the smallest index for which c⃗j ̸= 0.

After performing a row swap, we can arrange it so that the first coordinate of c⃗i ̸= 0. After scaling the
first row, we can then assume that

c⃗i =


1
...
∗


Now by performing row operations, we can ensure that everything below the 1 in c⃗i is 0. Then by
the induction hypothesis, we can use the elementary row operations to put the small section in the
southeast corner into a RREF.

Then we use those pivots to clear all the non-zero entry above them, so we are done.

2
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Solving Equations

Ax⃗ = b⃗

Input A which is m× n and b ∈ Fm, where x1, . . . , xn are unknowns, and we want to solve for x⃗.

Algorithm 0.1

1. Step 1:
Make an m× (n+ 1) matrix

(
A | b⃗

)
2. Step 2:

We use elementary row operations to put
(
A | b⃗

)
into RREF

3. Step 3:
Let

(
B | c⃗

)
denote the RREF matrix obtained in Step 2, solve Bx⃗ = c⃗ directly gives us the

solution, which are precisely the solutions to Ax⃗ = b⃗.

We saw that if
(
A | b⃗

)
and

(
B | c⃗

)
are row equivalent m × (n + 1) matrices, then there exists

U ∈ GLm(F ) such that (
B | c⃗

)
= U ·

(
A | b⃗

)
Remark:

U ·

 | | |
c⃗1 c⃗2 · · · c⃗r

| | |

 =

 | | |
U · c⃗1 U · c⃗2 · · · U · c⃗r

| | |


so U ·

(
A | b⃗

)
=
(
U ·A | U · b⃗

)
=
(
B | c⃗

)
, so B = U ·A, c⃗ = U · b⃗. So now

Bx⃗ = c⃗ ⇔ UAx⃗ = Ub⃗ ⇔ Ax⃗ = b⃗ ∵ U invertible

Remark: If
(
A | b⃗

)
is in RREF, then Ax⃗ = b⃗ has no solution iff the last column is a pivot column.

Lecture 22 - Mon - Mar 4 - 2024

Example 0.43

Suppose we have V = R[x]≤2 and B = {1 + x + x2, 1 + 2x + 4x2, 1 + 3x + 9x2}. How would you find
[1 + x]B ?

Proof: We write

[1 + x]B =

c1

c2

c3

 ∈ R3

This means that
1 + x = c1(1 + x+ x2) + c2(1 + 2x+ 4x2) + c3(1 + 3x+ 9x2)
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Comparing the coefficients, we have

x0 : 1 = c1 + c2 + c3

x1 : 1 = c1 + 2c2 + 3c3

x2 : 0 = c1 + 4c2 + 9x3

which corroesponds to 1 1 1
1 2 3
1 4 9


c1

c2

c3

 =

1
1
0

 ⇝ RREF → solution

2

Theorem 0.27

If (A | b⃗) is in RREF, then Ax⃗ = b⃗ has a solution if and only if the last column of it is not a pivot
column.

Proof: 1. (=⇒)
Last time we proved this using contrapositive.
2. (⇐=)
Recall that if A and B are row equivalent, then

{x⃗ : Ax⃗ = 0⃗} = {x⃗ : Bx⃗ = 0⃗}

Remark: In general, if j1 < j2 < · · · < jk are the pivot columns and we let u1, . . . , ud denote the free
variables, then the equation Bx⃗ = 0⃗ gives rise to k non-trivial linear equations for the form

xji + λi1u1 + λi2u2 + · · ·+ λidud = 0

for i = 1, . . . , k, and λij ∈ F .
In particular, we see how to give all solutions,

1. we can easily assign any value in out field to the free vars

2. the bound variables are uniquely determined by this assignment

We continue the proof:
If (A | b⃗) is in RREF and the last column is not a pivot column, then Ax⃗ = b⃗ has a solution. We

have 
A b1

b2
...
bm



x1

x2
...

xn+1

 = 0⃗

If the last column is not a pivot column, then xn+1 is a free variable, so we can give it any value and there
will still be a solution.
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Example 0.44

(
1 0 2
0 1 3

)c1

c2

c3

 =
[

0
0

]

In general, we have

(A | b⃗)



c1

c2
...
cn

−1

 = 0⃗ ⇔ A


c1

c2
...
cn

− b⃗ = 0 ⇔ A


c1

c2
...
cn

 = b⃗

as desired. 2

We now show that RREF of a matrix is unique.

Theorem 0.28

If B and C are m× n matrices in RREF that are row equivalent, then B = C.

Corollary 0.8

RREF of a m× n matrix A is unique.

Proof: If A→ B and A→ C, B,C in RREF, then because row equivalence is transitive, then B and C are
equivalent, so B = C. 2

Proof: of Theorem
We proved this by induction on n = number of columns of B and C

1. Base Case: n = 1
A m× 1 matrix in RREF is either 

0
0
...
0

 or


1
0
...
0


2. Now we assume the result holds whenever n ≤ k

3. Consider the case when n = k + 1

2

Lecture 23 - Wed - Mar 6 - 2024
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Recall Ax⃗ = 0⃗, we can row reduce A to a B in RREF such that B has certain columns that are pivot
columns and certain columns that are not. The free variables are those indexed by the non-pivot columns
while bounded variables are indexed by pivot columns xj0, . . . , xjk. Thus Ax⃗ = 0⃗ is equivalent to the system

xj1 = λ11u1 + · · ·+ λ1du1

xj2 = λ21u1 + · · ·+ λ2du1

...
xjk = λk1u1 + · · ·+ λkdu1

Corollary 0.9

Nullity of A = number of free variables = number of non-pivot columns.

Proof: Let u1, . . . , ud denote the free variables and xj1, . . . , xjk denote the Bounded variables. The nullspace
of A is

{x⃗ : Ax⃗ = 0⃗}

and the nullity is the dimension of the nullspace. After relabelling,

{x⃗ : Ax⃗ = 0⃗} = {(u1, . . . , ud, xj1, . . . , xjk) : system above}

We create a map T : F d → nullspace(A) such that

T (c1, . . . , cd) = (c1, . . . , cd, λ11c1 + · · ·+ λ1dcd, . . . , λk1c1 + · · ·+ λkdcd)

Notice T is linear, and the kernel of T is (0, . . . , 0) because

T (a1, . . . , ad) = (0, . . . , 0︸ ︷︷ ︸
d

, 0, . . . , 0︸ ︷︷ ︸
k

)

thus a1 = · · · = ad = 0, which implies that T is one-to-one. Notice T is also onto since every elemetn of the
nullspace is uniquely determined by an assignment of the free variable. Therefore, T is an isomorphism, so
the nullspace of A ∼= F d, which then gives us that nullity of A is the same as the number of free variables.
2

Example 0.45

If A is m× n with columns c1, . . . , cn, thus

A


x1
...
xn

 = x1c⃗1 + · · ·+ xnc⃗n

If A is m× n with

A =

 | | |
c⃗1 c⃗2 · · · c⃗n

| | |


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then

TA : Fn → Fm

TA(x⃗) = Ax⃗

im(TA) = {A


x1
...
xn

 : x1, . . . , xn ∈ F}

= {x1c⃗1 + · · ·+ xnc⃗n : x1, . . . , xn ∈ F}

= span(cols of A)
= Col(A)

How do we find a basis for the column space of A? or the basis for im(TA)

Result 0.12

We put A to B in RREF. If j1, . . . , jk are the pivot columns, then the corresponding columns of A is
the basis of the column space of A .

Lemma 0.7

If B is in RREF, then the pivot columns of B form a basis for the column space of B

Proof: Let b1, . . . , bk denote the pivot columns of B and let j1 < j2 < · · · < jk denote the coordinate where
1 appears in b⃗1, . . . , b⃗k. Then

b⃗1 = e⃗j1

b⃗2 = e⃗j2

...
b⃗k = e⃗jk

Notice that {e1, . . . , em} is linearly independent, so that {e⃗j1 , . . . , e⃗jk
} ⊆ {e1, . . . , em} is also linearly inde-

pendent. Therefore, {b⃗1, . . . , b⃗k} is also linearly independent.
Now to show that b⃗1, . . . , b⃗k span the column space, it suffices to show that if b⃗ is another column

of B, then b⃗ ∈ {b⃗1, . . . , b⃗k}.
Now let b⃗ be a not pivot column of B, our claim is that if the ith coordinate of b⃗ is non-zero, then

i ∈ {j1, j2, . . . , jk}.
Proof: of the claim:
If ith coordinate is non-zero, then the ith row is also non-zero, so the first column with a non-zero entry in
the ith row is a pivot column, which implies that i ∈ {j1, j2, . . . , jk}. 2

Therefore,

b⃗ = λ1e⃗j1 + · · ·+ λke⃗jk

= λ1b⃗1 + · · ·+ λk b⃗k

so b⃗ ∈ span{pivot cols of B} 2
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Theorem 0.29

If A is row equivalent to B in RREF and B has pivot columns j1, . . . , jk, which implies that the
j1, . . . , jk columns of A form a basis for the column space of A and rank(A) = k = number of pivot
columns.

Proof: Write

A =

 | | |
c⃗1 c⃗2 · · · c⃗n

| | |

 B =

 | | |
u⃗1 u⃗2 · · · u⃗n

| | |


If A and B are row equivalent, then there exists an invertible n × n matrix U such that A = UB. If
u⃗j1 , . . . , u⃗jk

are the pivot columns of B. Notice

UB = U

 | | |
u⃗1 u⃗2 · · · u⃗n

| | |


=

 | | |
U · u⃗1 U · u⃗2 · · · U · u⃗n

| | |


Our claim is that the columns above form a basis for the column space of A:
This is because U is invertible so a unique linear combination is still unique. 2

Corollary 0.10

If A is m× n, then

n = number of columns
= number of pivot columns + number of non-pivot columns
= rank + nullity

Lecture 24 - Fri - Mar 8 - 2024

Result 0.13

For A ∈Mn(F ), the following are equivalent:

1. A is invertible

2. TA : Fn → Fm, TA(x⃗) = A · x⃗ is bijective

3. Nullspace for A is (0)

4. Null(A) = 0

5. rank(A) = n
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6. The columns of A form a basis for Fn

Proof:

1. 1→ 2
If A is invertible, then there exists B such that BA = AB = I, so TA(Bx⃗) = A · (Bx⃗) = (AB) · x⃗ = x⃗,
so TA is onto. By rank-nullity theorem, it is also one to one.

2. 2→ 3
ker(T ) = {x⃗ : Ax⃗ = 0⃗}, but TA is one to one, thus ker(T ) = {⃗0}, which implies that null space of A is
(⃗0).

3. 3→ 4
Immediate

4. 4→ 5
Follows from rank-nullity theorem

5. 5→ 6
If rank = n, then column rank of A = n, then if v⃗1, . . . , v⃗n are the columns of A, then span{v⃗1, . . . , v⃗n} =
Fn, which implies that v⃗1, . . . , v⃗n is a basis for Fn

6. 6→ 1
If the columns of A form a basis, then let v⃗1, . . . , v⃗n denote these columns, and since they are basis,
then for every j ∈ {1, . . . , n}, we have ej = b1j v⃗1 + · · ·+ bnj v⃗n : b1j , . . . , bnj ∈ F , so this means

A


b1j

...
bnj

 =

 | | |
v⃗1 v⃗2 · · · v⃗n

| | |



b1j

...
bnj


= b1j v⃗1 + · · ·+ bnj v⃗n

= e⃗j

Therefore, we know that there exists matrix B such that A ·B = I

We formed a loop. 2

We recall that for 2× 2 matrices
(
a b

c d

)
, we had a very simple test for invertibility:

(
a b

c d

)
is invertible ⇔ ad− bc ̸= 0

We’d like to extend this for larger matrices.
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Determinants

For what follows,

A =


— r⃗1 —

—
... —

— r⃗n —


and we will sometimes write A = (r⃗1, . . . , r⃗n)

n-linear

Definition 0.35: n-linear

We say that a function
D : Mn(F )→ F

is n-linear if, when we fix all rows other than the ith row and let the ith rows vary, we obtain a linear
function of the ith row, for i = 1, 2, . . . , n

Exercise: Show that D : M2(F )→ F that sends aE1,1 + bE1,2 + cE2,1 + dE2,2 to ad− bc is 2-linear.

Example 0.46

If

D : M2(F )→ F

D

((
a b

c d

))
= ac

Then D is 2-linear.

Example 0.47

Let

D


a b c

d e f

g h i


 = aei E


a b c

d e f

g h i


 = a+ e+ i

Then D is 3-linear, and E is not 3-linear. E is not linear because you would send 0 to non-zero element.

Definition 0.36: Alternating

Let D : Mn(F )→ F be n-linear, then we say D is alternating if the following hold:

If B is obtained from A by interchanging rows i, j, i ̸= j, then D(B) = −D(A) and
whenever A has two equal rows, D(A) = 0.
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Result 0.14

Let F be a field of characteristic not equal to two. Then if D is n-linear then D(A) = −D(B) whenever
B is obtained by interchanging two rows of some matrix A if and only if D(C) = 0 whenever C has
two identical rows. Moreover, the converse holds without any restriction on the characteristic of the
field.

Proof: Suppose that D(A) = −D(B) whenever B is obtained by interchanging two rows of some matrix A.
Then if C has two identical rows, then if we switch these rows we see D(C) = −D(C) and so 2D(C) = 0
which gives that D(C) = 0. Conversely, now assume that D(C) = 0 whenever C has two identical rows and
let A be a matrix with rows r1, . . . , rn. Then create a new matrix A′ with rows s1, . . . , sn where si = ri for
all i ̸= j, k, j < k, and sj = rj + rk, sk = rj + rk. Then D(A′) = 0 since A′ has two equal rows. But notice
since D is a linear function of the jth row, we see that

0 = D(A′) = D(s1, . . . , sn) = D(s1, . . . , si−1, rj , si+1, . . . , sn) +D(s1, . . . , si−1, rk, si+1, . . . , sn)

Next we use linearity of the kth row to get that the RHS is the sum of four terms

D(s1, . . . , si−1, rk, si+1, . . . , sk − 1, rj , sk+1, . . . , sn),
D(s1, . . . , si−1, rk, si+1, . . . , sk − 1, rk, sk+1, . . . , sn),
D(s1, . . . , si−1, rj , si+1, . . . , sk − 1, rj , sk+1, . . . , sn),
D(s1, . . . , si−1, rj , si+1, . . . , sk − 1, rk, sk+1, . . . , sn).

Notice the second and third of these terms is zero, since the matrices have two equal rows. Since the four
terms sum to zero, we see that D(A) = −D(B) where A is the matrix with rows r1, . . . , rn and B is obtained
by switching the jth and kth rows of A. 2

Remark: Notice that, however, if D(A) = −D(B) when we interchange two rows of A to obtain B and D
is n-linear, this does not imply D(C) = 0 whenever C has two equal rows. What if we are working in field
with characteristic 2?

Lemma 0.8

If A → B through RREF, then D(A) = D(B) if it is Ri → Ri + cRj ; D(A) = −D(B) if it is
Ri → Rj & Rj → Ri; and D(B) = cD(A) if it is Ri = cRi, c ̸= 0.

Proof: If we scale the ith row of A by a nonzero scalar c, thenD(A′) = cD(A) sinceD is linear as a function of
the ith row; if A′ is obtained by interchanging two rows of A then D(A′) = −D(A). Finally, we can check if A
has rows r1, . . . , rn and we replace row i by ri +crj then by n-linearity D(r1, . . . , ri−1, ri +crj , ri+1, . . . , rn) =
D(A). It follows that if A and A′ are row equivalent then D(A) = αD(A′) with α a nonzero element of F .
2

Now consider an n-linear alternating function

D : Mn(F )→ F

65



Result 0.15

Our claim is that if D(I) ̸= 0, then D(A) = 0 ⇔ A is not invertible.

Proof: We row reduce A to a matrix B in RREF. By the above, D(A) ̸= 0 ⇔ D(B) ̸= 0. If B is the
identity matrix then A is invertible since it has full rank and since D(I) ̸= 0 we see that D(A) ̸= 0. If B is
not the identity matrix, then we do not have a pivot in every column and since the number of rows is equal
to the number of columns, we must have a zero row. Thus D(B) = 0 and since A is row equivalent to B we
see that D(A) = 0. 2

Lecture 25 - Mon - Mar 11 - 2024

Definition 0.37: Determinant

We say a map
D : Mn(F )→ F

is a determinant function if

1. It is n-linear

2. It is alternating

3. D(I) = 1

Remark: We will see that for all n ≥ 1, there exists a unique function, which we will call the
determinant.

Example 0.48

For n = 1, we would have D((a)) = a, which is indeed n-linear, alternating, and D((1)) = 1.

Example 0.49

For n = 2, we would have

D

((
a b

c d

))
= ad− bc

is 2-linear, alternating, and D((I)) = 1.
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Discovery 0.13

We will now show that the determinant function exist for every n by induction on n.

Proof:

1. Base cass, n = 1, 2:

2. Suppose that d ≥ 3, there exists a determinant function whenever n < d.

3. We will show that there exists a determinant function

D : Md(F )→ F

Definition 0.38: A(i | j)

Given an m×m matrix A, we let A (i | j) denote the (m− 1)× (m− 1) matrix obtained by deleting
the ith row and the jth column.

Proposition 0.10

Let det : Ml−1(F )→ F be a determinant function. For j = 1, 2, . . . , d we define

Ej : Ml(F )→ F

Ej(A) =
d∑

i=1
aij(−1)i+j det(A (i | j))

then each Ej is a determinant function; i.e. they are n-linear, alternating and Ej(I) = 1.

Proof: We first compute Ei(In). Since in this case the (i, j)-entry of I is zero unless j = i and is 1 if i = j,
we see that Ej(A) = (−1)2jD(I(j | j)) = D(In−1) = 1.
We now show Ej is alternating. Notice that it suffices to show that D(A) = 0 whenever A has two identical
rows and it suffices to consider the case when the two rows are adjacent, so suppose that the pth and
(p + 1)st row of A are the same. Then A(i|j) has two identical rows if i /∈ {p, p + 1} and so D(A(i|j)) = 0
for all i except when i ∈ {p, p + 1}, and so Ej(A) = ai,j(−1)i+jD(A(i|j)) + ai+1,j(−1)i+j+1D(A(i + 1|j)).
One can now easily check these two terms cancel. Now let us consider the case where A has rows rk for
k ̸= i and row i is ri + csi. We must show that Ej(A) = Ej(A1) + cEj(A2), where A1 is the matrix in
which the kth row is rk for all k, and A2 is the matrix in which the kth row is rk if k ̸= i and the ith

row is si. Then by (n − 1)-linearity of D, we see that D(A(p|j)) = D(A1(p|j)) + cD(A2(p|j)) if p ̸= i and
D(A(i|j)) = D(A1(i|j)) = D(A2(i|j)) since all rows other than the ith are the same in A,A1, and A2. So
from these fact is follows that Ej(A)−Ej(A1)− cEj(A2) = (A(i, j)−A1(i, j)− cA2(i, j))(−1)i+jD(A(i|j)).
Notice A(i, j)− A1(i, j)− cA2(i, j) = 0 so we obtain linearity in each row, so Ej is a determinant function.
2 2
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Lecture 26 - Wed - Mar 13 - 2024

We were tying to show that determinant functions exists and they are unique.
Recall that to check an n-linear map is alternating, it suffices to check that D(C) = 0 whenever C

has two consecutive equal rows, and we were showing that the determinant functions exist by induction on
n.

Discovery 0.14

We now show that there exist exactly one determinant function.

Proof: For the proof, let ej denote a row of n zeros with jth spot being 1. Let

A =


a11 a12 · · · a1n

...
... . . . ...

an1 an2 · · · ann

 r⃗i = (ai1, . . . , ain)

Therefore we can write the first row of A as a11e⃗1 + · · ·+ a1ne⃗n. If we fix all other rows and look at D as a
linear function of the first row, then

D(A) = a11D


— e⃗1 —

—
... —

— r⃗n —

+ · · ·+ an1D


— e⃗n —

—
... —

— r⃗n —



=
n∑

j=1
a1jD


— e⃗j —

—
... —

— r⃗n —


Similarly, we can proceed the same process for the second row of A. Therefore we can rewrite this as

D(A) =
n∑

j1=1

n∑
j2=1

a1j1a2j2D


— e⃗1 —
— e⃗2 —

—
... —

— r⃗n —


Continuiting in this manner, we see that

D(A) =
n∑

j1=1
· · ·

n∑
jn=1


a1j1 · · · anjn

·D


— e⃗1 —
— e⃗2 —

—
... —

— e⃗n —


︸ ︷︷ ︸

scalar


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Example 0.50

For 2× 2, and D is 2-linear with D(I) = 1, then

D

(
a11 a12

a21 a22

)
=
�
���

����

a11a21D

(
1 0
1 0

)
+ a11a22D

(
1 0
0 1

)
+ a12a21D

(
0 1
1 0

)
+
�

���
����

a12a22D

(
0 1
0 1

)

= a11a22D

(
1 0
0 1

)
− a12a21D

(
1 0
0 1

)
= a11a22 − a12a21

Suppose that D is n-linear and alternating, D : Mn(F )→ F , thus

D(A) =
n∑

j1=1
· · ·

n∑
jn=1


n∏

i=1
aiji
·D


— e⃗1 —
— e⃗2 —

—
... —

— e⃗n —




Notice if there exist p ̸= q such that jp = jq implies that e⃗jp
= e⃗jq

, which impies that D(matrix) = 0.
Thus we may assume that j1, . . . , jn are pairwise distinct. Since they all take values in {1, 2, . . . , n} we see
that {1, 2, . . . , n} must be a rearrangement of 1, 2, . . . , n. That is, there must be a one-to-one and onto map
σ : {1, . . . , n} → {1, . . . , n} such that ji = σ(i) for i = 1, 2, . . . , n. We recall that the set of bijective set maps
is called the set of permutations of {1, 2, . . . , n} and it forms a group under composition; this group is called
the n-th symmetric group and we let Sn denote this group:

Sn = {σ : {1, 2, . . . , n} → {1, 2, . . . , n}}

Then we can rewrite the sum as

D(A) =
n∑

σ∈Sn

n∏
i=1

aiσ(i) ·D


— e⃗1 —
— e⃗2 —

—
... —

— e⃗n —


For σ ∈ Sn, we define sgn(σ) := D(matrix). We call this quantity the sign of the permutation σ. We will
show that this sign is always 1 or −1. 2
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Lecture 27 - Fri - Mar 15 - 2024

Lemma 0.9

Let σ ∈ Sn, then we can perform a series of row interchanges to transform


— e⃗σ(1) —

—
... —

— e⃗σ(n) —

 to the

identity matrix. If d, e ∈ N and we can row reduce


— e⃗σ(1) —

—
... —

— e⃗σ(n) —

 → I using d row interchanges

and using e interchanges, then d ≡ e (mod 2).

Proof:
Proof: of first statement:
We induct on n, notice that it is true for n = 1.
Induction Hypothesis: Assume true for n < d, d ≥ 2.
Consider the case when n = d :


— e⃗σ(1) —

—
... —

— e⃗σ(d) —

⇝


— e⃗τ(1) —

—
... —

— e⃗τ(d−1) —
0 · · · 1

 =


— e⃗τ(1) 0

—
... 0

— e⃗τ(d−1) 0
0 · · · 1


σ(1), . . . , σ(d) is the rearrangements of 1, . . . , d, so there exists i such that σ(i) = d. If i = d, we do nothing,
otherwise, we interchange rows i and d as shown above. Notice that τ(1), . . . , τ(d − 1) is a permutation of
1, 2, . . . , d− 1. By induction hypothesis, we can perform row interchanges that turn

— e⃗τ(1)

—
...

— e⃗τ(d−1)

→ Id−1

and if we do these interchanges on 
— e⃗τ(1) —

—
... —

— e⃗τ(d−1) —
0 · · · 1

→ Id

as desired. 2

Proof: of statement 2:
For this, we let D be a determinant function D : Mn(C)→ C. Consider a matrix

A =


— e⃗σ(1) —

—
... —

— e⃗σ(n) —


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Suppose that we have two ways of transforming A to the identity cia row interchanges:

A→ A1 → A2 → · · · → Ad−1 → I

A′ → A′
1 → A′

2 → · · · → A′
e−1 → I

If we go by the top path, D(A) = (−1)d, and if we go by the bottom path, we have D(A) = (−1)e, thus we
can conclude that d and e have the same parity. 2 2

We define for σ ∈ Sn

sgn(σ) = (−1)d

where we can row reduce


— e⃗σ(1) —

—
... —

— e⃗σ(n) —

 → I with d row interchanges. This is well-defined because if

we can row reduce with d1 row interchanges and d2 interchanges, then d1 ≡ d2 (mod 2) and thus (−1)d1 =
(−1)d2 .

Corollary 0.11

If D : Mn(F )→ F is a determinant function, then we have

D


a11 · · · a1n

...
...

an1 · · · ann

 =
∑

σ∈Sn

(
n∏

i=1
ai,σ(i)

)
sgn(σ)

Theorem 0.30

For A,B ∈Mn(F ), we have
det(AB) = det(A) det(B)

Proof: Notice if det(C) = 0 if and only if C is not invertible. Hence AB is not invertivle if and only if A is
not invertible or B is not invertible. Thus we have

0 = det(AB) ⇐⇒ det(A) = 0 or det(B) = 0
⇐⇒ det(A) det(B) = 0

So STP the case when det(A) ̸= 0 and det(B) ̸= 0. i.e., A and B are both invertible.

Define a map D : Mn(F ) → F via the rule D(A) = det(AB)
det(B) . CLAIM: D is n-linear, alternating,

and D(I) is equal to 1. Notice D(I) = 1. We then show it is n-linear, we first write

A =


— r⃗1 —

—
... —

— r⃗n —

 =⇒ AB =


— r⃗1 ·B —

—
... —

— r⃗n ·B —


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So to show D is n-linear, we fix all rows but ith and let it vary. Thus we know that it is n-linear because both
matrix multiplication and determinant function are linear. Alternating is easy to see because two same rows
multiply by B are still the same, and because determinant function is alternating, thus D is also alternating.
2

Result 0.16

This gives us a nice result:
If σ, τ ∈ Sn, then sgn(σ ◦ τ) = sgn(σ) sgn(τ).

Proof: Def check. 2

Lecture 28 - Mon - Mar 18 - 2024

Recall from last lecture, we have

det(A) =
∑

σ∈Sn

[
sgn(σ) ·

n∏
i=1

ai,σ(i)

]

Discovery 0.15

Sn is a group under ◦ ( \circ ), and {±1} is a group under · ( \cdot ). Moreover,

sgn : Sn → {±1}
sgn(σ ◦ τ) = sgn(σ)sgn(τ) ∀ σ, τ ∈ Sn

sgn is a group homomorphism. And

An = ker(sgn) = {σ : sgn(σ) = 1} = kernel of sgn

notice that An is the alternating group, a subgroup of Sn. It is also closed under ◦, taking inverses, it
has the identity:

sgn(σ) = sgn(τ) ⇒ sgn(σ ◦ τ) = sgn(σ)sgn(τ) = 1
sgn(σ) = 1 ⇒ sgn(σ−1) = 1

Theorem 0.31

Let A ∈Mn(F ), then det(AT ) = det(A).

Proof: We have

det(A) =
∑

σ∈Sn

sgn(σ)
n∏

i=1
ai,σ(i)

det(AT ) =
∑

σ∈Sn

sgn(σ)
n∏

i=1
aσ(i),i
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Notice that σ(1), . . . , σ(n) is a permutation of 1, . . . , n, so the following follows the definition. Basically, we
can just rearrange them, in other words, take their inverses:

det(AT ) =
∑

σ∈Sn

sgn(σ−1)
n∏

j=1
aj,σ−1(j)

gg 2

Recall we showed that
Ej(A) =

n∑
i=1

aij(−1)i+j det(A(i | j))

is a determinant function. Since determinant function is unique, we have

Definition 0.39: Cofactor Expansion Along jth Column

det(A) =
n∑

i=1
aij(−1)i+j det(A(i | j))

Example 0.51

Use cofactor expansion to find

det

2 6 18
0 5 906
0 0 3

 = 2(−1)1+1 det
(

5 906
0 3

)
= 30

The Classical Adjoint

Theorem 0.32

If A, n× n, and det(A) ̸= 0, then

A−1 = 1
det(A)

(
(−1)i+j det(A(j | i))

)
1≤i,j≤n

Theorem 0.33

If dimV = n, and T : V → V is defined as det(T ) := det([T ]B) where B is an ordered basis, then
[T ]C = S−1[T ]BS, and we have

det([T ]C) = det([T ]B)

Lecture 29 - Wed - Mar 20 - 2024
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Eigenvalues and Eigenvectors

Consider

T : R2 → R2

T

([
x

y

])
=
([

3x
2y

])

The linear transformation sends
[

1
0

]
to
[

3
0

]
and

[
0
1

]
to
[

0
2

]
, and we know that T

([
5
7

])
= T

([
5
0

]
+
[

0
7

])
.

Definition 0.40: Eigenvalue & Eigenvector

Let T : V → V be a linear operator. We say that the scalar c ∈ F is an eigenvalue of T if there exists
0 ̸= v ∈ V such that T (v) = cv, and we call v the eigenvector of T .

Example 0.52

Consider the example above, we notice that
[

1
0

]
is an eigenvector of T since we have T

([
1
0

])
= 3·

[
1
0

]
,

where 3 would be the eigenvalue.

Remark: If v⃗ is an eigenvector of T with corresponding eigenvalue c, so is λ · v for λ ̸= 0, λ ∈ F .

T (λ · v) = λ · T (v) = λ · c · v = c · (λ · v)

Remark: For A ∈Mn(F ), c ∈ F is an eigenvalue of A if there exists v⃗ ̸= 0 such that Av⃗ = c · v⃗.
Exercise: V = R[x], we define two linear operator:

T : V → V T (p(x)) =
∫ x

0
p(t) dt

S : V → V S(p(x)) = d

dx
p(x)

What are the eigenvalues / eigenvectors of T and S?
Proof: T does not have eigenvector. If there exists 0 ̸= p(x) ∈ R[x] such that

T (p(x)) = c · p(x), c ∈ R

which implies that ∫ x

0
p(t) dt = c · p(x)

which then implies that p(x) = c · p′(x), which clearly has no solution with 0 ̸= p(x) ∈ R[x], c ∈ R because
degree of p′(x) is always less than degree of p(x) for p(x) ̸= 0.

How about S? If 0 ̸= p(x) is an eigenvector, we need S(p(x)) = c · p(x) for some c ∈ R ⇒
p′(x) = c · p(x). Case 1: c ̸= 0, so we have no solution, because deg(p(x)) > deg(p′(x)). Case 2: c = 0,
p′(x) = 0, so we can conclude that p(x) is a constant. Thus eigenvalue is 0, and eigenvector is nonzero
constant polynomials. 2
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Example 0.53

Show that A =
(

0 1
−1 0

)
∈M2(R) has no real eigenvalue.

Proof: Suppose we have a solution, so we have c ∈ R and
[
a

b

]
̸=
[

0
0

]
such that A

[
a

b

]
= c ·

[
a

b

]
, which

would then give us
[
b

−a

]
=
[
ca

cb

]
, since a, b not both zero, which implies that c ̸= 0, a ̸= 0, b ̸= 0. Now, we

have −1 = c2. If we work over C, then i is the eigenvalue, and the eigenvector would be
[

1
i

]
2

Example 0.54

Let A = In ∈Mn(F ), then the eigenvalue is simply 1, and everything is its eigenvector.

Definition 0.41: Eigenspace

Let T : V → V be an operator (includes A ∈Mn(F )). Then if c ∈ F , we let Wc = {v⃗ ∈ V : T (v⃗) = c·v⃗},
which is called the eigenspace of T associated to c.

Theorem 0.34

For all c ∈ F , Wc is a subspace of V .

Proof: If suffices to show that 0⃗ ∈Wc and Wc is closed under addition and scalar Multiplication.

T (⃗0) = 0⃗ = c · 0⃗ ⇒ 0⃗ ∈Wc

and more definition check. 2

Remark: c is an eigenvalue of T if and only if Wc ̸= (⃗0) if and only if dim(Wc) ≥ 1.

Theorem 0.35

Let T : V → V be an linear operator for dim(V )≪∞, and let c ∈ F , then TFAE:

(1) c is an eigenvalue of T

(2) Wc ̸= (⃗0)

(3) T − cI is not invertible.

(4) det(T − cI) = 0

Proof: We saw 1 ⇔ 2
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2 ⇒ 3. If Wc ̸= (⃗0), then there exists 0 ̸= v such that T (v) = cv, which is equivalent to (T − cI)(v) = 0,
which means that ker(T − cI) ̸= (⃗0), which implies that T − cI is not 1-1, hence not invertible.

3 → 4, T − cI not invertible ⇒ det(T − cI) = 0.

4 ⇒ 1, det(T − cI) = 0, implies that ker(T − cI) ̸= (⃗0), so there exists 0 ̸= v⃗ such that (T − cI)(v) = 0⃗,
thus T (v) = c · v. 2

Characteristic Polynomial

Definition 0.42

In general, if we let x be an indeterminate, then xI − A ∈ Mn(F [x]). We will see that det(xI − A) is
a monic degree n polynomial in F [x] whose roots are the eigenvalues of A.

Lecture 30 - Fri - Mar 22 - 2024

Discovery 0.16

Let x be a variable, let pA(x) = det(xI−A), where xI−A ∈Mn(F [x]), then c is a root of pA(x) ⇔ c

is an eigenvalue.

Proof: Let B = xI −A and we write b =


b11 b12 · · · b1n

...
... . . . ...

bn1 bn2 · · · bnn

 Therefore, we have bij = xδij − aij where

δij =

1 if i = j

0 if i ̸= j
, following that, we have

det(xI −A) = det(B) =
∑

σ∈Sn

sgn(σ)b1σ(1) · · · bnσ(n)

=
∑

σ∈Sn

sgn(σ)(xδ1σ(1) − a1σ(1)) · · · (xδnσ(n) − anσ(n))

=
∑

σ∈Sn

(
sgn(σ)xnδ1σ(1) · · · δnσ(n) + lower degree terms

)
∈ F [x]

Notice that the coefficient for xn in pA(x) is
∑

σ∈Sn

sgn(σ)δ1σ(1) · · · δnσ(n) = det


δ11 δ12 · · · δ1n

...
... . . . ...

δn1 δn2 · · · δnn

 = 1

Therefore, pA(x) is a monic polynomial of x with degree n, and thus

c is a root for pA(x) ⇔ det(cI −A) = 0 ⇔ c is an eigenvalue of A

2
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Example 0.55

Find pA(x) when A =

0 2 0
3 1 −1
3 7 −1

.

We have

pA(x) = det(xI −A)

= xdet
(
x− 1 1
−7 x+ 1

)
− (−2) det

(
−3 1
−3 x+ 1

)
= x [(x− 1)(x+ 1) + 7] + 2 [−3(x+ 1) + 3]
= x3

which means that the only eigenvalue is 0, and to find the corresponding eigenvectors, we solve for
(A− oI)x⃗ = 0⃗. 0 2 0

3 1 −1
3 7 −1

 x⃗ = 0⃗ ⇝

0 2 0 0
3 1 −1 0
3 7 −1 0


1 0 − 1

3 0
0 1 0 0
0 0 0 0



where we can find that the eigenvector is

x3/3
0
x3

 for x3 ̸= 0.

Theorem 0.36

If A and B are similar, (i.e., there exists S ∈ GLn(F ) such that B = S−1AS) then pA(x) = pB(x). In
particular, they have the same eigenvalues.

Proof: We have B is S−1AS for some S ∈ GLn(F ), thus

pB(x) = det(xI −B)
= det(xI − S−1AS)
= det(S−1(xI −A)S)
= det(S−1) det(xI −A) det(S)
= det(xI −A) = pA(x)

gg 2

Remark: So they have the same eigenvalues.
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Theorem 0.37

If A is upper triangular, then pA(x) = (x − a11)(x − a22) · · · (x − ann), which implies that aii are the
eigenvalues.

Definition 0.43: Multiplicity

If c is an eigenvalue of A, then pA(x) = (x − c)nq(x) for q(c) ̸= 0. We call n the multiplicity of the
eigenvalue c.
n is not the dimension of the eigenspace in general, but we so have dim Wc ≤ n.

Result 0.17

If p(x) = xn + cn−1x
n−1 + · · · c1x+ c0, we let C =



0 0 0 · · · 0 −c0

1 0 0 · · · 0 −c1

0 1 0 · · · 0 −c2
...

...
... . . . ...

...
0 0 0 · · · 1 −cn

 is called the companion

matrix of p(x)

Theorem 0.38

pC(x) = xn + cn−1x
n−1 + · · · c1x + c0 ∈ F [x], we prove this by induction on n. We assume true for

n < d, d ≥ 2. Consider the case when n = d, so

C =



0 0 0 · · · 0 −c0

1 0 0 · · · 0 −c1

0 1 0 · · · 0 −c2
...

...
... . . . ...

...
0 0 0 · · · 1 −cn

 → xI − C =



x 0 0 · · · 0 c0

−1 x 0 · · · 0 c1

0 −1 x · · · 0 c2
...

...
... . . . x

...
0 0 0 · · · −1 cn


· · ·

Lecture 31 - Mon - Mar 25 - 2024

Quotients

Let V be a vector space over the field F and let W and W ′ be subspaces of V . We say that the sum of
W and W ′ is the subspace of V given by {w + w′ : w ∈ W,w′ ∈ W ′}. We say that this sum is direct if
W ∩W ′ = {0}. Notice that if the sum is direct that if v ∈ W +W ′ then there is unique way to write it in
the form w + w′ with w ∈W and w′ ∈W ′, since if we have two decompositions

v = w1 + w′
1 = w2 + w′

2
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then subtracting yields w1 − w2 = w′
2 − w′

1 and so w1 − w2 ∈ W ∩W ′ = {0}. Thus w1 = w2 and w′
1 = w′

2.
When a sum is direct, we write W ⊕W ′ to denote the sum W + W ′. We say that a subspace W ′ of V is
complementary to W if V = W + W ′ and this sum is direct; that is, V = W ⊕W ′. Notice that if W is a
subspace of V then a complementary subspace exists: take a basis B for W ; extend it to a basis C for V ;
now let W ′ denote the span of C\B; then one can check W +W ′ is direct and equal to V . Now let W be a
subspace of a vector space V . Just as we formed Z/nZ in MATH 145 using an equivalence relation, we can
similarly define a quotient space V /W by putting an equivalence relation on V as follows. We write v ∼W v′

if v − v′ ∈ W . Notice that ∼W is an equivalence relation: it’s transitive since 0 ∈ W ; it’s symmetric, since
if w ∈ W then −w ∈ W ; finally, if v ∼W v′ and v′ ∼W v′′ then v − v′ and v′ − v′′ are in W so their sum,
v − v′′, is in W , which gives v ∼W v′′. Notice that if v ∈ V then every element of V that is equivalent to v
with respect to ∼W is of the form v + w for some w ∈ W and all elements of this form are equivalent to v.
For this reason, we write v+W to denote the equivalence class of a vector v ∈ V and we call an equivalence
class a coset of W . We should think of a coset of W as translating the subspace W by a vector in V . We let
V/W denote the set of cosets of W .

Example 0.56

Let V = R2 and let W denote the span of (1, 1), which is the “diagonal” line through the origin. Then
the cosets of W (i.e., the equivalence classes) are the sets {(x, x+ c) : x ∈ R} with c ∈ R.

Proof: Every coset is a set of the form (a, b) + W . Notice that W = {(x, x) : x ∈ R} so the coset
(a, b) +W = {(a+ x, b+ x) : x ∈ R} = {(y, c+ y) : y ∈ R}, where c = b− a. 2

Proposition 0.11

Let W be a subspace of V . Then V/W is a vector space with addition given by (v1 +W ) + (v2 +W ) =
v1 + v2 +W and scalar multiplication c · (v +W ) = cv +W .

Theorem 0.39: Universal Property

Let V be a vector space and let W be a subspace of V and let π : V → V/W be the quotient map. If
T : V → U is a linear map to another vector space U and W ⊆ ker(T ) then there is a unique linear
map T̃ : V/W → U such that the following diagram commutes:

V U

V/W

where the top arrow is the map T , the downward arrow is the quotient map π and the diagonal map
is T̃ . In other words, there is a unique linear map T̃ such that T = T̃ ◦ π.

Theorem 0.40

Let W be a subspace of V and let W ′ be a complementary subspace to W . Then W ′ ∼= V/W .
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Corollary 0.12

If V is n-dimensional and W is a d-dimensional subspace, then V/W has dimension n− d.

Lecture 32 - Wed - Mar 27 - 2024

Compute pA(x) = det(xI − A) and find its roots. For each eigenvalue c, we compute the nullspace
of A− cI whose nonzero elements are eigenvectors for eigenvalue c.

Definition 0.44: Diagonalization

Let A ∈ Mn(F ), we say that A is diagonalizable if there exists S ∈ GLn(F ) and a diagonal matrix D
such that D = S−1AS (i.e., A is similar to a diagonal matrix).

Note that ϕ : Mn(F )→Mn, ϕ(X) = S−1XS is an isomorphism.

Theorem 0.41

If A ∈Mn(F ) has the property that Fn has a basis v⃗1, . . . , v⃗n consisting of eigenvalues of A, then A is
diagonalizable and if Av⃗i = civ⃗i, then

c1 0
c2

. . .
0 cn

 = S−1AS

where S =

 | | |
v⃗1 v⃗2 · · · v⃗n

| | |

.

Proof: Let S =

 | | |
v⃗1 v⃗2 · · · v⃗n

| | |

, then S is invertible because Colrank of S = n, which implies that the

determinant of S is non-zero. Consider

A · S = A ·

 | | |
v⃗1 v⃗2 · · · v⃗n

| | |

 =

 | | |
Av⃗1 Av⃗2 · · · Av⃗n

| | |

 =

 | | |
c1v⃗1 c2v⃗2 · · · cnv⃗n

| | |



so we have S−1(AS) = S−1

 | | |
c1v⃗1 c2v⃗2 · · · cnv⃗n

| | |

 =

 | | |
c1S

−1v⃗1 c2S
−1v⃗2 · · · cnS

−1v⃗n

| | |

 Notice that

the identity is simply

 | | |
e⃗1 e⃗2 · · · e⃗n

| | |

 = I = S−1S. Hence we know that S−1AS =

 | | |
c1 c2 · · · cn

| | |

,
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which is the diagonal matrix


c1 0 0
0 c2 0

0 0 . . . 0
0 0 cn

 2

Example 0.57

Let A =
(

1 1
−6 6

)
, find a diagonal matrix D and a matrix invertible matrix S such that S−1AS = D.

1. Step 1:
Compute the characteristic polynomial we have

pA(x) = det(xI −A) = det
(
x− 1 −1

6 x− 6

)
= (x− 3)(x− 4)

Hence 3 and 4 are our eigenvalues

2. Step 2: Find corresponding eigenvectors

When c = 3, we have A−3I =
(
−2 1
−6 3

)
⇝

(
1 − 1

2
0 0

)
, which implies that

[
1
2

]
is an eigenvector.

Similarly, when c = 4, we have A−4I =
(
−3 1
−6 2

)
, which implies that

[
1
3

]
is another eigenvector.

Therefore, they are the basis for F 2, S =
(

1 1
2 3

)
3. Step 3: Find the inverse for S

We can find that S−1 =
(

3 −1
−2 1

)
4. Calculate

Therefore

D = S−1AS =
(

3 −1
−2 1

)(
1 1
−6 6

)(
1 1
2 3

)
=
(

3 0
0 4

)

Discovery 0.17: Not all matrices are diagonalizable

Consider the matrix A =
(

0 1
0 0

)
because the only eigenvalues are 0.

Example 0.58

Find A100.
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Proof: Since we have A = S

(
3 0
0 4

)
S−1 = SDS−1, therefore

A = (SDS−1)(SDS−1) · · · (SDS−1)︸ ︷︷ ︸
100

(1)

= SD100S−1 (2)

= S

(
3100 0

0 4100

)
S−1 (3)

2

Theorem 0.42

In fact, An n× n matrix A is diagonalizable over F if and only if there is a basis for Fn consisting of
eigenvectors of A.

Proof: Backward is trivial, conversely, if A is diagonalizable, then there exist c1, . . . , cn and S ∈ GLn(F )
such that 

c1 0 0
0 c2 0

0 0 . . . 0
0 0 cn

 = S−1AS

so S


c1 0 0
0 c2 0

0 0 . . . 0
0 0 cn

 = AS. If S =

 | | |
v⃗1 v⃗2 · · · v⃗n

| | |

, then S


c1 0 0
0 c2 0

0 0 . . . 0
0 0 cn

 = A

 | | |
v⃗1 v⃗2 · · · v⃗n

| | |

,

then

 | | |
Sc1e⃗1 Sc2e⃗2 · · · Scne⃗n

| | |

, then

 | | |
c1v⃗1 c2v⃗2 · · · cnv⃗n

| | |

 =

 | | |
Av⃗1 Av⃗2 · · · Av⃗n

| | |

. So the

vectors are eigenvectors of A and they form a basis because S is invertible. 2

Theorem 0.43

Let A ∈Mn(F ) and suppose that pA(x) has n distinct roots in F . Then A is diagonalizable.

Proof: Let c1, . . . , cn be the distinct roots of the characteristic polynomial of A and let v1, . . . , vn be
corresponding eigenvectors. We claim that v1, . . . , vn forms a basis for Fn. To see this, it suffices to show
that the vectors are linearly independent. So SFAC that {v1, . . . , vn} is dependent. Then there is a minimal
dependent subset: {vi1 , . . . , vik

}. Notice k ≥ 2 since the vectors are nonzero. So we have a non-trivial
dependence

k∑
j=1

λjvij
= 0

Left multiplying by A gives us another relation
k∑

j=1
λjcij

vij
= 0
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Then multiplying our first relation by cik
and subtracting our second relation we get

k−1∑
j=1

λj(cik
− cij )vij = 0

By minimality of our dependent subset that λj(cik
−cij

) = 0 for j = 1, . . . , k−1; since c1, . . . , cn are distinct,
we then see λ1 = · · · = λk−1 = 0, so our original relation becomes λkvik

= 0 so λk = 0 too, contradicting
the fact that our dependence was non-trivial. 2

Lecture 33 - Mon - Apr 1 - 2024

Definition 0.45: Linear Recurrence

A sequence f0, f1, f2, . . . taking values in a field F satisfies a linear recurrence is there exists d ≥ 1
and constants c0, c1, . . . , cd ∈ F such that

fn = c1fn−1 + c2fn−2 + · · ·+ cdfn−d ∀ n ≥ d

Example 0.59

Fibonacci sequence is a classical example, so does fn = 2n and gn = n2.

Solving Linear Recurrences with Linear Algebra

Suppose we have a function f(n) for n = 0, 1, 2, . . . and a d ≥ 1 such that f(0), f(1), . . . , f(d − 1) are our
initial values, and we have f(n) = c1f(n− 1) + c2f(n− 2) + · · ·+ cdf(n− d). We wonder how we can solve
this using linear algebra, consider

F d ∋ v⃗0 =


f(0)
f(1)

...
f(d− 1)


Let A =∈Md(F ) be

A =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0

. . .
0 0 0 0 · · · 1
cd cd−1 cd−2 cd−3 · · · c1


Let v⃗n = Anv⃗0 for all n ≥ 0,
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Theorem 0.44

We will have

v⃗n =


f(n)

f(n+ 1)
...

f(n+ d− 1)

 ∀ n ≥ 0

Proof: The proof involves induction, which is a lot typing, just check definitions. 2

Now, consider [
1 0 · · · 0

]
︸ ︷︷ ︸

d

(An · v⃗0) =
[
1 0 · · · 0

]
· v⃗n

=
[
1 0 · · · 0

]


f(n)
f(n+ 1)

...
f(n+ d− 1)

 = f(n)

Suppose that A is diagonalizable and D = s−1AS, then An = S−1DnS. Therefore,

f(n) =
[
1 0 · · · 0

]
An · v⃗0 (4)

=
([

1 0 · · · 0
]
S
)
Dn(S−1v⃗0) (5)

Example 0.60

Consider F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2.

Therefore, v⃗0 =
[

0
1

]
and A =

(
0 1
1 1

)
, thus An · v⃗0 =

[
Fn

Fn+1

]
. Diagonalizes A. Step 1, we need to

first find the characteristic polynomial, which simply is x2−x−1, which has distinct roots: (1+
√

5)/2

and (1−
√

5)/2. Step 2, Then we want to find the eigenvectors: If λ is ab eigenvalue, of
(
a b

c d

)
, then

we need to solve (
a− λ b 0
c d− λ 0

)

so if (a− λ, b) ̸= (0, 0). then
[

b

λ− a

]
is an eigenvector. The matrix S has columns u1, u2 where u1, u2

are eigenvectors for these eigenvalues. We compute and find

S =
(

1 1
1+

√
5

2
1−

√
5

2

)

⇒ S−1AS =
(

1+
√

5
2 0
0 1−

√
5

2

)
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Hence solving for A we have

A = S

(
1+

√
5

2 0
0 1−

√
5

2

)
S−1 ⇒ An = S

( 1+
√

5
2

)n

0

0
(

1−
√

5
2

)n

S−1

Therefore,

Fn =
[
1 0

]
An

[
0
1

]
=
[
1 0

]
S

( 1+
√

5
2

)n

0

0
(

1−
√

5
2

)n

S−1

[
0
1

]

=
[
1 1

]( 1+
√

5
2

)n

0

0
(

1−
√

5
2

)n

[ 1√
5

− 1√
5

]

= 1√
5

{(
1 +
√

5
2

)n

−
(

1−
√

5
2

)n
}

Remark: Notice that Fn is the closest integer to 1√
5 · ρ

n, where ρ is the golden ratio.

Result 0.18

Not all matrices are diagonalizable, if, however, we work over C, then all matrices are triangularizable:
(i.e., there exists S ∈ GLn(C) and an upper-triangular matrix U such that U = S−1AS).

Theorem 0.45

Let F be a field, and let A ∈Mn(F )(⊆Mn(K)), then there exists a finite extension K of F and there
exists S ∈ GLn(K) such that

S−1AS is upper-triangular

Proof:
2

Lecture 34 - Wed - Apr 3 - 2024

Review for Math 145
Theorem 0.46

If p(x) ∈ F [x] (e.g. x2 + 1 ∈ R[x]), there exists a field extension K of F (i.e. F ⊆ K) such that
p(x) factors into linear factors:

p(x) = C(x− λ1) · · · (x− λd) λ1, . . . , λd ∈ K
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Definition 0.46

f K is an extension of F , K is an F -vector space. So K has a dimension. If dimFK <∞, we say that
K is a finite extension of F .

Corollary 0.13

If A ∈ Mn(F ), then there exists a finite extension K of F such that A has an eigenvalue as a matrix
in Mn(K).

Proof: Let pA(x) ∈ F [x] be the characteristic polynomial of A, then there exists a finite extension K of F
such that

pA(x) = (x− λ1) · · · (x− λd) λ1, . . . , λd ∈ K

so A has eigenvalues as a matrix in Mn(K). (In fact n eigenvalues when we count by multiplicity). 2

Recall that not all matrices are diagonalizable,

Example 0.61

For instance, A =
(

0 1
0 0

)

Definition 0.47

A matrix A ∈ Mn(F ) is triangularizable over F if there exists S ∈ GLn(F ) such that S−1AS is
upper-triangular.

Theorem 0.47

Let A ∈ Mn(F ), then there exists a finite extension K of F such that A ∈ Mn(F ) ⊆ Mn(K) is
triangularizable over K and if F = C, we can take K = C.

Proof: Induction over n:

1. Base case: n = 1
Trivial case

2. Assume true

3. We know there exists a finite extension K of F such that

pA(x) = (x− λ1) · · · (x− λd) λ1, . . . , λd ∈ K

and when F = C, we can take K = C. Now there exists an eigenvalue v⃗1 ∈ Kd such that

Av⃗1 = λ1v⃗1
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We can extend v⃗1 to an ordered basis v⃗1, . . . , v⃗d for Kd. Let S =

 | | |
v⃗1 v⃗2 · · · v⃗d

| | |

 ∈ GLd(K).

Notice that

A

 | | |
v⃗1 v⃗2 · · · v⃗d

| | |

 =

 | | |
Av⃗1 Av⃗2 · · · Av⃗d

| | |

 =

 | | |
λ1v⃗1 Av⃗2 · · · Av⃗d

| | |


so

S−1AS = S−1

 | | |
λ1v⃗1 Av⃗2 · · · Av⃗d

| | |

 =

 | | |
S−1λ1v⃗1 S−1Av⃗2 · · · S−1Av⃗d

| | |



Recall I =

 | | |
e⃗1 e⃗2 · · · e⃗d

| | |

 = S−1S, hence

S−1AS =



λ1 c1 c2 · · · cd−1

0
0
...
0 A′

 A′ ∈Md−1(K), c1 . . . , cd ∈ K

By induction hypothesis, we know that there exists T ∈ GLd−1(K) such that T−1A′T is upper-triangular,
thus we consider

1 0 · · · 0
0
...
0 T−1


(
S−1AS

)


1 0 · · · 0
0
...
0 T

 =


1 0 · · · 0
0
...
0 T−1




λ1 c2 · · · cd−1

0
...
0 A′




1 0 · · · 0
0
...
0 T




=


1 0 · · · 0
0
...
0 T−1



λ1 ∗ · · · ∗
0
...
0 A′T



=


λ1 ∗ · · · ∗
0
...
0 T−1A′T



=


λ1 ∗ · · · ∗
0
...
0 U


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so if we let T1 =


1 0 · · · 0
0
...
0 T

, then T−1
1 S−1AST1 is upper-Triangular. 2

For simplicity, we will work in Mn(C), so

pA(x) = (x− λ1) · · · (x− λn)

and there exists S ∈ GLn(C) such that S−1AS =


γ1 ∗

γ2
. . .

0 γn

. Because S−1AS is similar to A,

PS−1AS(x) = pA(x) = (x− λ1) · · · (x− λn)

so det(xI − S−1AS) = (x− γ1) · · · (x− γn), which implies that γi’s are rearrangements of λi’s.

Discovery 0.18

Recall the following facts:

1. Similar matrices have the same trace

2. Similar matrices have the same determinant

So tr(A) = tr(S−1AS) = γ1 + γ2 + · · ·+ γn = λ1 + λ2 + · · ·+ λn, and
det(A) = det(S−1AS) = γ1γ2 · · · γn = λ1λ2 · · ·λn.

Definition 0.48: Vandermonde Matrices

For λ1, . . . , λn ∈ F , we define the matrix

Vn(λ1, . . . , λn) =


1 λ1 · · · λn−1

1
1 λ2 · · · λn−1

2
...

... . . . ...
1 λn · · · λn−1

n


to be called the Vandermonde matrices.
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Lecture 35 - Fri - Apr 5 - 2024

Recall the Vandermonde Matrix.

Theorem 0.48

We have
det(Vn(λ1, . . . , λn)) =

∏
j>i

(λj − λi)

In particular, if λ1, . . . , λn are distinct, then Vn(λ1, . . . , λn) is invertible. We prove that if P0, P1, . . . , Pn

are polynomials with Pi monic and degree i, then the determinant still holds for the matrix defined as
P0(λ1) P1(λ1) · · · Pn−1(λ1)
P0(λ2) P1(λ2) · · · Pn−1(λ2)

...
... . . . ...

P0(λn) P1(λn) · · · Pn−1(λn)



Lemma 0.10

Let p(x) ∈ F [x] be monic of degree n and let c ∈ F , then there exists a monic polynomial q(x) of
degree n− 1 such that

p(x)− p(c) = (x− c)q(x)

Proof: we know that
xi − ci = (x− c)(xi−1 + xi−2c+ · · ·+ ci−1)

so we have

p(x)− p(c) =

n−1∑
j=0

ajx
j + xn

−
n−1∑

j=0
ajc

j + cn


= (xn − cn) +

n−1∑
j=0

aj(xj − cj)

= (x− c)

xn−1 + xn−2c+ · · ·+ cn−1 +
n−1∑
j=0

aj(xj−1 + xj−2c+ · · ·+ cj−1)


and q(x) is monic of degree n− 1. 2

Proof: of the theorem:
We prove the theorem by induction on n.
Base case, n = 2: we simply have

det
(

1 λ1 + a

1 λ2 + a

)
= (λ2 − λ1)

Suppose the statement is true for n = d where d ≥ 2.
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Consider the case when n = d+ 1:

A =


1 P1(λ1) · · · Pn−1(λ1)
1 P1(λ2) · · · Pn−1(λ2)
...

... . . . ...
1 P1(λn) · · · Pn−1(λn)


Perform row operations, Ri −→ Ri −R1 for i = 2, . . . , d+ 1, we get A becomes

1 P1(λ1) · · · Pn−1(λ1)
0 P1(λ2)− P1(λ1) · · · Pn−1(λ2)− Pn−1(λ1)
...

... . . . ...
0 P1(λn)− P1(λ1) · · · Pn−1(λn)− Pn−1(λ1)


Let c = λ1, by our lemma, for all i ≥ 1, there exists a polynomial Qi−1(x) of degree i− 1 such that

Pi(x)− Pi(c) = (x− c)Qi−1(x)

We know that

Pi(λj)− Pi(λi) = Pi(λj)− Pi(c)
= (λj − c)Qi−1(λj) plug in x = λj

Hence we can rewrite our matrix as
1 P1(λ1) · · · Pn−1(λ1)
0 (λ2 − λ1)Q0(λ2) · · · (λ2 − λ1)Qn−2(λ2)
...

... . . . ...
0 (λn − λ1)Q0(λn) · · · (λn − λ1)Qn−2(λn)


We use cofactor expansion along the first column to obtain

det = (−1)1+1 det


(λ2 − λ1)Q0(λ2) · · · (λ2 − λ1)Qn−2(λ2)

... . . . ...
(λn − λ1)Q0(λn) · · · (λn − λ1)Qn−2(λn)



= (λ2 − λ1)(λ3 − λ1) · · · (λn − λ1) det


Q0(λ2) · · · Qn−2(λ2)
Q0(λ3) · · · Qn−2(λ3)

... . . . ...Q0(λn) · · · Qn−2(λn)


Because Qi is monic, we use the induction hypothesis to say this is

=
∏

j>i≥2
(λj − λi) =

∏
j>i

(λj − λi)

QED. 2
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Lagrange Interpolation

Set-up

We have distinct values λ1, . . . , λn ∈ F and a1, . . . , an ∈ F (which are not necessarily distinct), we want to
find a deg ≤ n− 1 polynomial p(x) such that

p(λ1) = a1 . . . p(λn) = an

We solve
p(x) = c0 + c1x+ c2x

2 + · · ·+ cn−1x
n−1

using the above knowns.
Notice that

p(λ1) = a1 . . . p(λn) = an

is equivalent to saying 
1 λ1 · · · λn−1

1
1 λ2 · · · λn−1

2
...

... . . . ...
1 λn · · · λn−1

n



c0

c1
...

cn−1

 =


a1

a2
...
an


Since we know that all λi’s are distinct, so the matrix V (λ1, . . . , λn) is invertible. That is,

c0

c1
...

cn−1

 = V −1(λ1, . . . , λn)


a1

a2
...
an


Final

Definition 0.49: Final

The final is 2 hours and 30 minutes long consisting five parts.

(a) 5 true or falses, 2 points each

(b) 5 short answer questions, 2 points each

(c) 3 long answer questions, on determinants

(d) 4 long answer questions, on diagonalizability and characteristic polynomial

(e) 3 long answer questions, on eigenspaces and similarity
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